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Probabilistic Model
Motivation: “probable” has many different meanings in NL. Can we have a rigorous
treatment (in the spirit of David Hilbert’s sixth problem)?

• The standard probability axioms are the foundations of probability theory
introduced by Russian mathematician Andrey Kolmogorov in 1933.

• https://en.wikipedia.org/wiki/Probability_axioms 1

Elements of Probabilistic Model

1. All outcomes of my interest: Sample Space Ω

2. Assigned numbers to each outcome of Ω: Probability Law P(·)

Question: What are the conditions of Ω and P(·) under which their induced probability
model becomes ”legitimate”?

1See https://www.scottaaronson.com/democritus/lec9.html for extra enlightment.
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Sample Space Ω

The set of all outcomes of my interest

1. Mutually exclusive

2. Collectively exhaustive

3. At the right granularity (not too

concrete, not too abstract)

1. Toss a coin. What about this?
Ω = {H,T ,HT}

2. Toss a coin. What about this? Ω = {H}

3. (a) Just figuring out prob. of H or T.
=⇒ Ω = {H,T}

(b) The impact of the weather (rain or no
rain) on the coin’s behavior.

=⇒ Ω = {(H,R), (T ,R),

(H,NR), (T ,NR)},

where R(Rain), NR(No Rain).
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Examples: Sample Space Ω

• Discrete case: Two rolls of a tetrahedral
die

- Ω = {(1, 1), (1, 2), . . . , (4, 4)}

• Continuous case: Dropping a needle in a
plain

- Ω = {(x , y) ∈ R2 | 0 ≤ x , y ≤ 1}
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Probability Law

• Assign numbers to what? Each outcome?

• What is the probability of dropping a needle at (0.5, 0.5) over the 1× 1 plane?

• Assign numbers to each subset of Ω: A subset of Ω: an event

• P(A): Probability of an event A.
◦ This is where probability meets set theory.

◦ Roll a dice. What is the probability of odd numbers?

P({1, 3, 5}), where {1, 3, 5} ⊂ Ω is an event.

• Event space A: The collection of subsets of Ω. For example, in the discrete case,
the power set of Ω.

• Probability Space (Ω,A,P(·))
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Random Variable: Idea

• In reality, many outcomes are
numerical, e.g., stock price.

• Even if not, very convenient if
we map numerical values to
random outcomes, e.g., ‘0’ for
male and ‘1’ for female.
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Random Variable: More Formally

• Mathematically, a random variable X is a function which maps from Ω to R.

• Notation. Random variable X , numerical value x .

• Different random variables X , Y , etc can be defined on the same sample space.

• For a fixed value x , we can associate an event that a random variable X has the
value x , i.e., {ω ∈ Ω | X (w) = x}

• Generally,

PX (S) = P(X ∈ S) = P(X−1(S)) = P
(
{ω ∈ Ω : X (w) ∈ S}

)
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Conditioning: Motivating Example

• Pick a person a at random
- event A: a’s age ≤ 20
- event B: a is married

• (Q1) What is the probability of A?

• (Q2) What is the probability of A, given that B is true?

• Clearly the above two should be different.

• Question. How should I change my belief, given some additional information?

• Need to build up a new theory, which we call conditional probability.
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Conditional Probability

• P(A | B): P(·|B) should be a new probability law.

• Definition.

P(A | B) :=
P(A ∩ B)

P(B)
, for P(B) > 0.

- Note that this is a definition, not a theorem.

• All other properties of the law P(·) is applied to the conditional law P(·|B).

• For example, for two disjoint events A and C ,

P(A ∪ C | B) = P(A | B) + P(C | B)
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Roadmap
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Discrete Random Variables

• The values that a random variable X takes is discrete (i.e., finite or countably
infinite).

• Then, pX (x) := P(X = x) := P
(
{ω ∈ Ω | X (w) = x}

)
, which we call probability

mass function (PMF).

• Examples: Bernoulli, Uniform, Binomial, Poisson, Geometric
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Bernoulli X with parameter p ∈ [0, 1]

• Only binary values

X =

{
0, w.p.2 1− p,

1, w.p. p

In other words, pX (0) = 1− p and pX (1) = p from our PMF notation.

• Models a trial that results in binary results, e.g., success/failure, head/tail

• Very useful for an indicator rv of an event A. Define a rv 1A as:

1A =

{
1, if A occurs,

0, otherwise

2with probability
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Uniform X with parameter a, b

• integers a, b, where a ≤ b

• Choose a number of Ω = {a, a + 1, . . . , b} uniformly at random.

• pX (i) = 1
b−a+1 , i ∈ Ω.

• Models complete ignorance (I don’t know anything about X )
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Binomial X with parameter n, p

• Models the number of successes in a
given number of independent trials

• n independent trials, where one trial has
the success probability p.

pX (k) =

(
n

k

)
pk(1− p)n−k
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Geometric X with parameter p

• Experiment: infinitely many independent
Bernoulli trials, where each trial has
success probability p

• Random variable: number of trials until
the first success.

• Models waiting times until something
happens.

pX (k) = (1− p)k−1p
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Joint PMF

• Joint PMF. For two random variables
X ,Y , consider two events {X = x} and
{Y = y}, and

pX ,Y (x , y) := P
(
{X = x} ∩ {Y = y}

)
•
∑

x

∑
y pX ,Y (x , y) = 1

• Marginal PMF.

pX (x) =
∑
y

pX ,Y (x , y),

pY (y) =
∑
x

pX ,Y (x , y)

Example.

pX ,Y (1, 3) = 2/20

pX (4) = 2/20 + 1/20 = 3/20

P(X = Y ) = 1/20 + 4/20 + 3/20 = 8/20
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Conditional PMF

• Conditional PMF

pX |Y (x |y) := P(X = x |Y = y) =
pX ,Y (x , y)

pY (y)

for y such that pY (y) > 0.

•
∑

x pX |Y (x |y) = 1

• Multiplication rule.

pX ,Y (x , y) = pY (y)pX |Y (x |y)

= pX (x)pY |X (y |x)

• pX ,Y ,Z (x , y , z) =
pX (x)pY |X (y |x)pZ |X ,Y (z |x , y)

pX |Y (2|2) = 1
1+3+1

pX |Y (3|2) = 3
1+3+1

E[X |Y = 3] = 1(2/9)+2(4/9)+3(1/9)+4(2/9)
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Continuous RV and Probability Density Function (PDF)

- How to handle random variables that have continuous values, e.g., velocity of a car?

Continuous Random Variable

A rv X is continuous if ∃ a function fX , called probability density function (PDF) , s.t.

P(X ∈ B) =

∫
B

fX (x)dx

- All of the concepts and methods (expectation, PMFs, and conditioning) for discrete rvs have
continuous counterparts

• P(a ≤ X ≤ b) =
∑

x :a≤x≤b pX (x)
• pX (x) ≥ 0,

∑
x pX (x) = 1

• P(a ≤ X ≤ b) =
∫ b

a
fX (x)dx

• fX (x) ≥ 0,
∫∞
−∞ fX (x)dx = 1
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PDF and Examples

• P(a ≤ X ≤ a + δ) ≈ fX (a) · δ

• P(X = a) = 0

Examples
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Cumulative Distribution Function (CDF)

• Discrete: PMF, Continuous: PDF

• Can we describe all types of rvs with a
single mathematical concept?

FX (x) = P(X ≤ x) ={∑
k≤x pX (k), discrete∫ x

−∞ fX (t)dt, continuous

• always well defined, because we can always
compute the probability for the event
{X ≤ x}

• CCDF (Complementary CDF): P(X > x)
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CDF Properties

• Non-decreasing

• FX (x) tends to 1, as x →∞

• FX (x) tends to 0, as x → −∞
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Continuous: Joint PDF and CDF (1)

Jointly Continuous

Two continuous rvs are jointly continuous if a non-negative function fX ,Y (x , y)

(called joint PDF) satisfies: for every subset B of the two dimensional plane,

P((X ,Y ) ∈ B) =

∫∫
(x ,y)∈B

fX ,Y (x , y)dxdy

1. The joint PDF is used to calculate probabilities

P((X ,Y ) ∈ B) =

∫∫
(x ,y)∈B

fX ,Y (x , y)dxdy

Our particular interest: B = {(x , y) | a ≤ x ≤ b, c ≤ y ≤ d}
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Continuous: Joint PDF and CDF (2)

2. The marginal PDFs of X and Y are from the joint PDF as:

fX (x) =

∫ ∞
−∞

fX ,Y (x , y)dy , fY (y) =

∫ ∞
−∞

fX ,Y (x , y)dx

3. The joint CDF is defined by FX ,Y (x , y) = P(X ≤ x ,Y ≤ y), and determines the
joint PDF as:

fX ,Y (x , y) =
∂2Fx ,y
∂x∂y

(x , y)

4. A function g(X ,Y ) of X and Y defines a new random variable, and

E[g(X ,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)fX ,Y (x , y)dxdy

L1(2) March 11, 2025 24 / 59



Continuous: Conditional PDF given a RV

• (discrete) pX |Y (x |y) =
pX ,Y (x ,y)
pY (y)

• (continuous) for fY (y) > 0,

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)

• Remember: For a fixed event A, P(·|A) is a legitimate probability law.

• Similarly, For a fixed y , fX |Y (x |y) is a legitimate PDF, since∫ ∞
−∞

fX |Y (x |y)dx =

∫∞
−∞ fX ,Y (x , y)dx

fY (y)
= 1
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Sum Rule and Product Rule

• Sum Rule

pX (x) =

{∑
y∈Y pX ,Y (x , y) if discrete∫

y∈Y fX ,Y (x , y)dy if continuous

◦ Generally, for X = (X1,X2, . . . ,XD),

pXi (xi ) =

∫
pX (x1, . . . , xi , . . . , xD)dx−i

◦ Computationally challenging, because of high-dimensional sums or integrals

• Product Rule

pX ,Y (x , y) = pX (x) · pY |X (y |x)

joint dist. = marginal of the first × conditional dist. of the second given the first
◦ Same as pY (y) · pX |Y (x |y)
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Bayes Rule

• X : state/cause/original value → Y : result/resulting action/noisy measurement

• Model: P(X ) (prior) and P(Y |X ) (cause → result)

• Inference: P(X |Y )?

pX ,Y (x , y) = pX (x)pY |X (y |x)

= pY (y)pX |Y (x |y)

pX |Y (x |y) =
pX (x)pY |X (y |x)

pY (y)

pY (y) =
∑
x ′

pX (x ′)pY |X (y |x ′)

fX ,Y (x , y) = fX (x)fY |X (y |x)

= fY (y)fX |Y (x |y)

fX |Y (x |y) =
fX (x)fY |X (y |x)

fY (y)

fY (y) =

∫
fX (x ′)fY |X (y |x ′)dx ′

pX |Y (x |y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
pY |X (y |x)

prior︷ ︸︸ ︷
pX (x)

pY (y)︸ ︷︷ ︸
evidence
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Bayes Rule for Mixed Case

K : discrete, Y : continuous

• Inference of K given Y

pK |Y (k |y) =
pK (k)fY |K (y |k)

fY (y)

fY (y) =
∑
k ′

pK (k ′)fY |K (y |k ′)

• Inference of Y given K

fY |K (y |k) =
fY (y)pK |Y (k |y)

pK (k)

pK (k) =

∫
fY (y ′)pK |Y (k |y ′)dy ′
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Roadmap

(1) Construction of a Probability Space

(2) Discrete and Continuous Probabilities

(3) Sum Rule, Product Rule, and Bayes’ Theorem

(4) Change of Variables/Inverse Transform

(5) Entropy and KL Divergence
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Normal (also called Gaussian) Random Variable

• Why important?
◦ Central limit theorem (CLT): One of the most remarkable findings in the probability

theory
◦ Convenient analytical properties
◦ Modeling aggregate noise with many small, independent noise terms

• Standard Normal N (0, 1)

fX (x) =
1√
2π

e−x
2/2

• E[X ] = 0

• var[X ] = 1

• General Normal N (µ, σ2)

fX (x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

• E[X ] = µ

• var[X ] = σ2
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Power of Gaussian Random Vectors

• Marginals of Gaussians are Gaussians

• Conditionals of Gaussians are Gaussians

• Products of Gausssian Densities are Gaussians.

• A sum of two Gassuaians is Gaussian if they are independent

• Any linear/affine transformation of a Gaussian is Gaussian.
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Marginals and Conditionals of Gaussians

• X and Y are Gaussians with mean vectors µX and µY , respectively.

• Gaussian random vector Z =

(
X
Y

)
with µ =

(
µX
µY

)
and the covarance matrix

ΣZ =

(
ΣX ΣXY
ΣYX ΣY

)
, where ΣXY = cov(X ,Y ).

- Marginal.

fX (x) =

∫
fX ,Y (x , y)dy ∼ N (µx ,ΣX )

- Conditional. X | Y ∼ N (µX |Y ,ΣX |Y ),

µX |Y = µX + ΣXYΣY
−1(Y − µY )

ΣX |Y = ΣX −ΣXYΣY
−1ΣYX
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Product of Two Gaussian Densities
Note: this is not the density of the product of two Gaussian RVs (which does not have
a closed-form expression).

• Lemma. Up to recaling, the pdf of the form exp(−1
2ax

2 − 2bx + c) is N (ba ,
1
a ).

• Using the above Lemma, the product of two Gaussians N (µ0, ν0) and N (µ1, ν1) is
Gaussian up to rescaling.

Proof.

exp
(
−(x − µ0)2/2ν0

)
× exp

(
−(x − µ1)2/2ν1

)
= exp

[
−1

2

(( 1

ν0
+

1

ν1

)
x2 − 2

(µ0
ν0

+
µ1
ν1

)
x + c

)]

=⇒ N


=ν︷ ︸︸ ︷
1

ν0−1 + ν1−1
, ν

(
µ0
ν0

+
µ1
ν1

) = N
(
ν1µ0 + ν0µ1
ν0 + ν1

,
ν0ν1
ν0 + ν1

)
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Sum of Gaussians

Note: this is the vector form, and hence the scalar form holds trivially.

• X ∼ N (µX ,ΣX ) and Y ∼ N (µY ,ΣY )

=⇒ aX + bY ∼ N (aµX + bµY , a
2ΣX + b2ΣY )
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Mixture of Two Gaussian Densities

• f1(x) is the density of N (µ1, σ
2
1) and f2(x) is the density of N (µ2, σ

2
2)

• Question. What are the mean and the variance of the random variable Z which has
the following density f (x)?

f (x) = αf1(x) + (1− α)f2(x)

Answer:

E(Z ) = αµ1 + (1− α)µ2

var(Z ) =
(
ασ21 + (1− α)σ22

)
+
(

[αµ21 + (1− α)µ22]− [αµ1 + (1− α)µ2]2
)
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Linear Transformation

• Linear transformation3 preserves normality

Linear transformation of Normal

If X ∼ N (µ, σ2), then for a 6= 0 and b, Y = aX + b ∼ N (aµ+ b, a2σ2).

• Thus, every normal rv can be standardized :

If X ∼ N (µ, σ2), then Y = X−µ
σ ∼ N (0, 1)

• Thus, we can make the table which records the following CDF values:

Φ(y) = P(Y ≤ y) = P(Y < y) =
1√
2π

∫ y

−∞
e−t

2/2dt

3Strictly speaking, this is affine transformation.
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Roadmap

(1) Construction of a Probability Space

(2) Discrete and Continuous Probabilities

(3) Sum Rule, Product Rule, and Bayes’ Theorem

(4) Change of Variables/Inverse Transform

(5) Entropy and KL Divergence
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Knowing Distributions of Functions of RVs

• If X ∼ N (0, 1), what is the distribution of Y = X 2?

• If X1,X2 ∼ N (0, 1), what is the distribution of Y = 1
2(X1 + X2)?

• Two techniques
◦ CDF-based technique

◦ Change-of-Variable technique

• In this lecture note, we focus on the case of univarate random variables for
simplicity.
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CDF-based Technique

S1. Find the CDF: FY (y) = P(Y ≤ y)

S2. Differentiate the CDF to get the pdf fY (y): fY (y) = d
dy FY (y)

• Example. fX (x) = 3x2, 0 ≤ x ≤ 1. What is the pdf of Y = X 2?

FY (y) = P(Y ≤ y) = P(X 2 ≤ y) = P(X ≤ √y) = FX (
√
y)

=

∫ √y
0

3t2dt = y
3
2 , 0 ≤ y ≤ 1

fY (y) =
d

dy
FY (y) =

3

2

√
y , 0 ≤ y ≤ 1
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How to Get Random Samples of a Given Distribution? (1)

• Assume that X ∼ exp(1), i.e., fX (x) = e−x and FX (x) = 1− e−x . How to make a
programming code that gives random samples following the distribution X?

• Theorem. Probability Integral Theorem. Let X be a continuous rv with a strictly

monotonic CDF F (·). Then, if we define a new rv U as U := F (X ) , then U

follows the uniform distribution over [0.1].

• Proof. Will show that FU(u) = u, which is the CDF of a standard uniform rv.

FU(u) = P(U ≤ u) = P(F (X ) ≤ u)
(∗)
= P(X ≤ F−1(u)) = F (F−1(u)) = u,

where (∗) is due to the strict monotonicity of F (·).
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How to Get Random Samples of a Given Distribution? (2)

Pseudo Code of getting a random sample with the distribution F (·).

Step 1. Get a random sample u over [0, 1] (most of software packages include this
capability of generating a random number generation)

Step 2. Get a value x = F−1(u).
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Change-of-Variables Technique: Univariate

• Chain rule of calculus:

∫
f (g(x))g ′(x)dx =

∫
f (u)du, where u = g(x).

• Consider a rv X ∈ [a, b] and an invertible, strictly increasing function U.

FY (y) = P(Y ≤ y) = P(U(X ) ≤ y) = P(X ≤ U−1(y)) =

∫ U−1(y)

a
fX (x)dx

fY (y) =
d

dy

∫ U−1(y)

a
fX (x)dx =

d

dy

∫ U−1(y)

a
fX (U−1(y))U−1

′
(y)dy

= fX (U−1(y)) · d

dy
U−1(y)

• Including the case when U is strcitly decreasing,

fY (y) = fX (U−1(y)) ·
∣∣∣∣ d

dy
U−1(y)

∣∣∣∣
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Change-of-Variables Technique: Multivariate (Optional)

• Theorem. Let fX (x) is the pdf of multivariate continuous random vector X . If
Y = U(X ) is differentiable and invertible, the pdf of Y is given as:

f (y) = fX (U−1(y)) ·
∣∣∣∣det

(
d

dy
U−1(y)

)∣∣∣∣
• Example. For a bivariate rv X with its pdf f (

(
x1
x2

)
) = 1

2π exp

(
−1

2

(
x1
x2

)T(
x1
x2

))
,

consider Y = AX , where A =

(
a b
c d

)
. Then, we have the following pdf of Y :

fY (y) =
1

2π
exp

(
−1

2
yT(A−1)

TA−1y
)
|ad − bc|−1
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Sums of Independent RVs

• (Pictorial) Meaning of Z = X + Y

• Example: Roll 2 dices

• Use convolution: (f ∗ g)

Find Z ’s PMF:

• pZ (z) =
∑

y∈Y pX (z − y)pY (y)

Find Z ’s PDF:

• fZ (z) =
∫∞
−∞ fX (z − y)fY (y)dy

Visit https://en.wikipedia.org/wiki/List_of_convolutions_of_
probability_distributions for some known convolution results.
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Statistics of Sums of Independent RVs

Nonetheless, finding the expectation and variance are easier

• Linearity of Expectation: E[x + y ] = E[x ] + E[y ]. Note: True even if they are not
independent RVs.

• var[X + Y ] = var[X ] + var[Y ]. Note: variance exhibits linearity only for independent
RVs, as there is no covariance

Other common cases:

• E[aX + b] = aE[X ] + b

• var[aX + b] = a2var[X ]

• E[
∑n

i=1 Xi ] =
∑n

i=1 E[Xi ]
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Further down the road . . .
Law of Large Numbers

Let X1,X2 . . .Xn be independent and identically distributed random variables. The
average of these random variables (sample mean) converges to the expected value µ
(population mean):

n∑
i=1

Xi → µ

The Central Limit Thorem (Average Version)

Let X1,X2 . . .Xn be independent and identically distributed random variables. The
average of these random variables approaches a normal as n→∞ :

1

n

n∑
i=1

Xi ∼ N

(
µ,
σ2

n

)
Where µ = E [Xi ] and σ2 = Var (Xi ).
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Shannon’s Information Theory

Claude Shannon (1948): A Mathematical Theory of Communication

Shannon’s measure of information is the number of bits to represent the amount of
uncertainty (randomness) in a data source, and is defined as entropy

H = −
n∑

i=1

pi log (pi )

Where there are n symbols 1, 2, . . . n, each with probability of occurrence of pi
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Justification of Shannon’s Entropy
• A set of possible events with probabilities pi (1 ≤ i ≤ n).

• Can we find a measure of how much “choice” is involved in the selection of the
event or of how uncertain we are of the outcome? Denote it as H(p1, p2, . . . , pn).

• (Axiomatic approach) H() should satisfy the following properties:
◦ H should be continuous in each pi .

◦ H should be a monotonic increasing function of n. With equally likely events there is
more choice, or uncertainty, when there are more possible events.

◦ If a choice be broken down into two successive choices, the original H should be the
weighted sum of the individual values of H.

1a A vs {B,C}: 1
2 vs 1

2

1b B vs C : 2
3 vs 1

3

2 A vs B vs C : 1
2 vs 1

3 vs 1
6

H(12 ,
1
2) + H(23 ,

2
3)

H(12 ,
1
3 ,

1
6)
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Roadmap

(1) Construction of a Probability Space

(2) Discrete and Continuous Probabilities

(3) Sum Rule, Product Rule, and Bayes’ Theorem

(4) Change of Variables/Inverse Transform

(5) Entropy and KL Divergence
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Measure Distance Between Two Distributions

Applications in Computer Science:

• Machine Learning:
◦ Model Evaluation: Comparing predicted vs. true distributions.
◦ Generative Models: Ensuring generated data resembles real data.

• Information Theory:
◦ Encoding Efficiency: Measuring information loss.

Challenge: How to measure the distance between B(n, p1 and B(np2 , where B(n, p) is
the Binomial distribution?

• ‖p1− p2‖? B(n = 10, 0.2) and B(n = 10, 0.1) vs B(n = 10, 0.4) and B(n = 10, 0.5)

• Lesson learned: need to compare the PMFs (PDFs), not the parameters
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Common Metrics

• Euclidean (L2) Distance:

◦ ‖u, v‖p = (
∑

i |ui − vi |p)
1
p , p = 2

◦ Not suitable for probability distributions.

• Manhattan (L1) Distance:
◦ p = 1
◦ Ignores underlying distribution properties.

• Kullback-Leibler (KL) Divergence and its generalization:
◦ Asymmetric and be careful of its interpretation.

• Wasserstein Distance (Earth Mover’s Distance):
◦ Measures the minimum ”cost” required to transform one distribution into another,

based on moving ”mass” in a metric space. It’s particularly useful for distributions
defined on continuous spaces.

◦ Related to Optimal Transport.
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Kullback-Leibler (KL) Divergence

Notation:

• P: True distribution

• Q: Approximate distribution

• DKL(P ‖ Q): KL divergence from Q to P

DKL(P ‖ Q) =
∑
x

P(x) log

(
P(x)

Q(x)

)
(discrete case)

or

DKL(P ‖ Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx (continuous case)
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Intuition behind KL

DKL(P ‖ Q) =
∑
x

P(x) log

(
P(x)

Q(x)

)
= −

(∑
x

P(x) logQ(x)−
∑
x

P(x) logP(x)

)
=
∑
x

P(x) log
1

Q(x)
−
∑
x

P(x) log
1

P(x)
= H(P,Q)− H(P)

1. H(P,Q): Average code length of a source P with estimated distribution Q
◦ log 1

Q(x) : Use log 1
Q(x) bits (assuming base = 2) to encode the message x .

◦ Expectation Over P: the average code length.

2. DKL(P ‖ Q) describes the excessive number of bits needed to encode the true
distribution P using an estimated distribution Q.
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Properties

• Non-Negativity: DKL(P ‖ Q) ≥ 0

• Zero Divergence: DKL(P ‖ Q) = 0 ⇐⇒ P = Q almost everywhere

• Asymmetric: DKL(P ‖ Q) 6= DKL(Q ‖ P)
◦ Implications: Changing the order of distributions changes the divergence value.
◦ DKL(P ‖ Q) measures the expected information loss when Q is used to approximate P,

weighted by P.
◦ Different Emphasis: the asymmetry arises because P and Q place different weights on

outcomes.
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Example
Let P and Q Be Simple Distributions

• Distribution P:
◦ P(0) = 0.9
◦ P(1) = 0.1

• Distribution Q:
◦ Q(0) = 0.5
◦ Q(1) = 0.5

Calculate DKL(P ‖ Q):

= 0.9 log

(
0.9

0.5

)
+0.1 log

(
0.1

0.5

)
≈ 0.9×0.847+0.1×(−1.609) ≈ 0.762−0.161 = 0.601 bits

Calculate DKL(Q ‖ P):

= 0.5 log

(
0.5

0.9

)
+0.5 log

(
0.5

0.1

)
≈ 0.5×(−0.847)+0.5×1.609 ≈ −0.423+0.805 = 0.382 bits

Observation:

DKL(P ‖ Q) > DKL(Q ‖ P)
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3. Why KL Divergence is Asymmetric

Expectation Basis

• DKL(P ‖ Q) measures the expected information loss when Q is used to approximate
P, weighted by P.

Different Emphasis

• The asymmetry arises because P and Q place different weights on outcomes.
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Impact of Asymmetry on “Nearest” Distribution

• Task: Find a distribution Q that is “closest” to P based on a chosen divergence
measure.

Asymmetric Implications

1. Direction Matters:
◦ DKL(P ‖ Q) aims to minimize information loss when approximating P with Q.
◦ Minimizing DKL(Q ‖ P) focuses on different aspects, potentially highlighting different

“closeness.”

2. Mode Seeking vs. Mean Covering:
◦ DKL(P ‖ Q) tends to be mode-seeking:

I Q covers the modes of P but might miss some support, because . . .

◦ DKL(Q ‖ P) tends to be mean-covering:
I Q covers all support of P, potentially assigning probability to regions where P has low

probability, because . . .
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An Example

Scenario: Approximating a Distribution

• True Distribution P: Highly concentrated around several values.

• Candidate Distribution Q: More spread out.

Using DKL(P ‖ Q):

• Q adjusts to cover the peaks of P, potentially ignoring low-probability regions.

Using DKL(Q ‖ P):

• Q must cover all regions where P has support, avoiding assigning probability mass
where P is zero or near-zero.
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Choosing the Direction

Task Dependent:

• Information Loss Minimization: Use DKL(P ‖ Q).

• Support Coverage: Use DKL(Q ‖ P).

Model Selection:

• The asymmetry influences which aspects of the distribution are prioritized in
modeling.
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