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Probabilistic Model

Motivation: “probable” has many different meanings in NL. Can we have a rigorous
treatment (in the spirit of David Hilbert's sixth problem)?

e The standard probability axioms are the foundations of probability theory
introduced by Russian mathematician Andrey Kolmogorov in 1933.

e https://en.wikipedia.org/wiki/Probability axioms !

Elements of Probabilistic Model

1. All outcomes of my interest: Sample Space (2

2. Assigned numbers to each outcome of Q2: Probability Law P(-)

Question: What are the conditions of Q and P(-) under which their induced probability

madel becomes " legitimate” ?
'See https://www.scottaaronson.com/democritus/lec9.html for extra enlightment.
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https://en.wikipedia.org/wiki/Probability_axioms
https://www.scottaaronson.com/democritus/lec9.html

Sample Space 2

The set of all outcomes of | my interest

1. Mutually exclusive 1. Toss a coin. What about this?
_ . Q={H, T,HT}

2. Collectively exhaustive
2. Toss a coin. What about this? Q = {H}

3. At the | right granularity | (not too

3. (a) Just figuring out prob. of H or T.
concrete, not too abstract) — Q={H, T}

(b) The impact of the weather (rain or no
rain) on the coin's behavior.

— Q={(H,R),(T,R),
(H,NR),(T,NR)},

where R(Rain), NR(No Rain).
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Examples: Sample Space 2

e Discrete case: Two rolls of a tetrahedral e Continuous case: Dropping a needle in a
die plain
- Q= {(171)7(172)77(474)} -1 = {(Xay) ER2 | 0 <Xy < 1}
L

4 1

3

2

1

1 2 3 4 . -;:
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Probability Law

e Assign numbers to what? Each outcome?

What is the probability of dropping a needle at (0.5,0.5) over the 1 x 1 plane?

Assign numbers to each subset of €2: A subset of £2: an event

P(A): Probability of an event A.

o This is where probability meets set theory.

o Roll a dice. What is the probability of odd numbers?
P({1,3,5}), where {1,3,5} C Q is an event.

Event space A: The collection of subsets of 2. For example, in the discrete case,
the power set of (.

Probability Space (Q, A, P(-))
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Random Variable: Idea

e In reality, many outcomes are
numerical, e.g., stock price.

e Even if not, very convenient if
we map numerical values to
random outcomes, e.g., ‘0’ for
male and ‘1’ for female.

L1(1)

Random Variable X

Sample Space
Q

-

X
Real Number Line

(a)

Random Variable:

// X =Maximum Roll
1 2 3 4 -
Real Number Line
2 3 4

Sample Space:
Pairs of Rolls

(b)
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Random Variable: More Formally

Mathematically, a random variable X is a | function | which maps from €2 to R.

Notation. Random variable X, numerical value x.

Different random variables X, Y, etc can be defined on the same sample space.

For a fixed value x, we can associate an event that a random variable X has the
value x, i.e.,, {w € Q| X(w) = x}

Generally,

Px(S) = P(X € S) = P(X"1(S)) = IP’({w cQ:X(w) e 5})
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Conditioning: Motivating Example

e Pick a person a at random
- event A: a's age < 20
- event B: a is married

e (Q1) What is the probability of A?
e (Q2) What is the probability of A, given that B is true?

e Clearly the above two should be different.

e Question. How should | change my belief, given some additional information?

e Need to build up a new theory, which we call conditional probability.
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Conditional Probability

P(A | B): P(:|B) should be a new probability law.

Definition.

P(A| B) := P(I;\(g)B), for P(B) > 0.

- Note that this is a definition, not a theorem.

All other properties of the law P(-) is applied to the conditional law P(:|B).

For example, for two disjoint events A and C,
P(AUC | B)=P(A| B)+P(C | B)
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Discrete Random Variables

e The values that a random variable X takes is discrete (i.e., finite or countably
infinite).

e Then, px(x) :=P(X = x) := ]P’({w c Q| X(w)= x}), which we call probability
mass function (PMF).

e Examples: Bernoulli, Uniform, Binomial, Poisson, Geometric
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Bernoulli X with parameter p € [0, 1]

e Only binary values

0, w.p? 1-
x =Y W.p P;
1, w.p. p

In other words, px(0) =1 — p and px(1) = p from our PMF notation.

e Models a trial that results in binary results, e.g., success/failure, head/tail

e Very useful for an | indicator rv  of an event A. Define a rv 1, as:

{1, if A occurs,
1, =

0, otherwise

“with probability
L1(2) March 11, 2025 13 / 59



Uniform X with parameter a, b

e integers a, b, where a < b
e Choose a number of Q = {a,a+1,..., b} uniformly at random.
e px(i) = b%ﬁl, i€ .

px(z) 4

1

b—a+4+1 | | |

e Models complete ignorance (I don't know anything about X)
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Binomial X with parameter n, p

e Models the number of successes in a
given number of independent trials

e n independent trials, where one trial has
the success probability p.

px (k) = (Z) p (1 —p)"*

L1(2)
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Geometric X with parameter p

e Experiment: infinitely many independent
Bernoulli trials, where each trial has
success probability p

e Random variable: number of trials until
the first success.

e Models waiting times until something
happens.

px(k) = (1= p)<p

L1(2)

px (k)

p=1/3
2 3 4 5 7 8 9 k
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Joint PMF

: Example.
e  Joint PMF. For two random variables xdmp
X, Y, consider two events {X = x} and ;A
{Y - y}, and 4 (1720 (2120 |2/20
PX,y(X,y) = P({X = X} M {Y — y}) 3 |2/20 |4r20 |1/20 |2/20
2 1/20 | 3/20 |1/20
* D, Pxy(x,y)=1 | —

e | Marginal PMF.

px(X) = Z PX,Y(Xa)/);

pX7y(]., 3) = 2/20

px(4) = 2/20 +1/20 = 3,20

pv(¥) =D px.v(xy) P(X = Y) =1/20 + 4/20 + 3/20 = 8,20

L1(2) March 11, 2025 17 / 59



Conditional PMF

Conditional PMF

pxiy(xly) == P(X =x|Y =y) = px,y (X, ¥)

py(y)

for y such that py(y) > 0.

> PX|Y(X’)/) =1

Multiplication rule.

px.y(x,y) = PY(Y)PXW(X\Y)
= PX(X)PY|X()/’X)

PX,Y,Z(Xa)/a z) =
Px(X)PY|X(Y\X)PZ|X,Y(Z\X7 y)

L1(2)

4 11/20 | 2120 (220

3 |2/20 |4/20 |1/20 (2/20

2 1720 | 320 |1/20
1 1/20
1 2 3 4 X

PX|Y(2|2) — HTlJrl

pxy(312) = 5

E[X|Y =3] =1(2/9)+2(4/9)+3(1/9)+4(2/9)
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Continuous RV and Probability Density Function (PDF)

- How to handle random variables that have continuous values, e.g., velocity of a car?

Continuous Random Variable

A rv X is continuous if 3 a function fx, called | probability density function (PDF)

P(X € B) :/ fx (x)dx
B

, S.t.

y

- All of the concepts and methods (expectation, PMFs, and conditioning) for discrete rvs have

continuous cou nterparts

L4 | a}
px(z) A PDF fy(r)
| I_I Pla<X<b) —_F
I ‘ I j.‘: h
e Plas< X <b)=) ,.cxch PX(X) * Plas X <b)= fab fx (x)dx
° px(x ) >0,> px(x)=1 o fx(x)>0, 7 fx(x)dx =1

L1(2)
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PDF and Examples

A PDF fy(x)

e Pla<X<a+i)~

X X +90

e P(X=2a)=0

L1(2)

fx(a) 5

Examples

fx(z)

Ifx(z)
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Cumulative Distribution Function (CDF)

e Discrete: PMF, Continuous: PDF

e Can we describe all types of rvs with a
single mathematical concept?

Fx(x) =P(X < x) =

D k<x Px(k), discrete
ffoo fx(t)dt, continuous

e always well defined, because we can always
compute the probability for the event
{X < x}

e CCDF (Complementary CDF): P(X > x)

L1(2)

PMF
§PMF PXX) AGDF Fyx)
’
px(2) 7 px(z)
] I - _ -
0 1 2 3 4 0 1 2 3 4 X
CDF Fy(x
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CDF Properties

e Non-decreasing
e Fx(x) tends to 1, as x — oo

e Fx(x) tends to 0, as x — —o0
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Continuous: Joint PDF and CDF (1)

Jointly Continuous

Two continuous rvs are | jointly continuous | if a non-negative function fx y(x,y)

(called joint PDF) satisfies: for

every

subset B of the two dimensional plane,

IP)((X, Y) c B) = // fX,y(X,y)dXdy
(x,y)eB

1. The joint PDF is used to calculate probabilities

P((X,Y) € B) = / / v (x, y)dxdy
(x,y)eB

Our particular interest: B={(x,y) |a<x<b,c <y <d}

L1(2)
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Continuous: Joint PDF and CDF (2)

2. The marginal PDFs of X and Y are from the joint PDF as:

fx(X)z/OO fx,v(x,y)dy, fv(y)zfoo fx,v (x, y)dx

— 00 —00

3. The joint CDF is defined by Fx y(x,y) =P(X < x,Y <y), and determines the

joint PDF as:
O%Fy

oxay X Y)
4. A function g(X,Y) of X and Y defines a new random variable, and

Elg(X, Y)] = /_ N /_ N g(x, y)fx. y(x, y)dxdy

fX,Y(Xay) —

L1(2) March 11, 2025
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Continuous: Conditional PDF given a RV

o (discrete) PX|y(X|y) _ pxﬁigsy)

e (continuous) for fy(y) > 0,

v (x]y) = fx;i(();’)y)

e Remember: For a fixed event A, P(:|A) is a legitimate probability law.

e Similarly, For a fixed y, fx|y(x|y) is a legitimate PDF, since

/OO 7 fx v (x, y)dx

x|y (xly)dx = ~0) =1

— 0

L1(2)
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Sum Rule and Product Rule

e Sum Rule

Zyey PX,Y(X, y) if discrete
px(x) = | |
fyey fx y(x,y)dy if continuous

o Generally, for X = (X1, X2,..., Xp),

pX,'(Xi) — /pX(Xla cee g Xig oo ,XD)dX_,'

o Computationally challenging, because of high-dimensional sums or integrals
e Product Rule

px,v (%, ¥) = px(x) - pyx(¥[x)
joint dist. = marginal of the first x conditional dist. of the second given the first
° Same as py(y) - px|y (xy)
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Bayes Rule

e X: state/cause/original value — Y result/resulting action/noisy measurement
e Model: P(X) (prior) and P(Y|X) (cause — result)
* Inference: P(X|Y)?

px,y(x,y) = px(x)pyx(y|x) fx,y(x,y) = fx(xX)fyx(y|x)
= py(y)px|v(xly) = fy (y) x|y (x]y)
~ px(x)pyx(¥[x) () fyix(y]x)
pX|Y(Xb/) — PY()/) fX|Y(X‘y) — fY(}/)
py(v) =D px(x)pyix(yIX) fy(y) = / e (X) fyix (v |x")dx’
X likelinood prior
(xly) = Py|x (¥ |x) px(x)
PX“:, y/ py(y)
posterior m
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Bayes Rule for Mixed Case

K: discrete, Y: continuous

e Inference of K given Y

Py (kly) = pK(k;iy(”;(y’k)

Z pr (K fy ik (y[K)

L6(3)

e [nference of Y given K

ik (y]K) = fy(yzﬁ(:)(k\y)

orc(K) = / A (v )iy (Kly')dy

March 11, 2025
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Normal (also called Gaussian) Random Variable

e Why important?
o Central limit theorem (CLT): One of the most remarkable findings in the probability
theory
o Convenient analytical properties
o Modeling aggregate noise with many small, independent noise terms

e Standard Normal A(0,1) o General Normal N (j,0?)
1 2 1 2 /5 2
fx(x) = e x"/2 Flx) = —— o= (x=p)*/20
(x) o x(x) — e
« E[X]=0 e E[X]=pu
e var[X] =1 o var[X] = o2
L6(5) March 11, 2025
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Power of Gaussian Random Vectors

Marginals of Gaussians are Gaussians

Conditionals of Gaussians are Gaussians

Products of Gausssian Densities are Gaussians.

e A sum of two Gassuaians is Gaussian if they are independent

Any linear/affine transformation of a Gaussian is Gaussian.
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Marginals and Conditionals of Gaussians
e X and Y are Gaussians with mean vectors ux and py, respectively.

e Gaussian random vector Z = (i) with pu = (Mx) and the covarance matrix

Hny
> >
Y7 = X XY , where X xy = cov(X,Y).
YXyx Xy
- Marginal. il
2 \ .
fx (x) :/fX,Y(Xay)d.y ~ N(px, Xx) fama \
- Conditional. X | Y NN(I“”X‘Y? 2X|Y)7 (a)BivariateZaussian.
_1 12 —;igl\xzzfl)
pxiy = px +XxyEy (Y — py) e
_1 O 0.6
Yxy =2x —XxyXy Xyx
(b) Marginal (I:llistribution. () Conditiona: l(:1istribl.ltion.
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Product of Two Gaussian Densities

Note: this is not the density of the product of two Gaussian RVs (which does not have
a closed-form expression).

e Lemma. Up to recaling, the pdf of the form exp(—%ax2 —2bx+c)is N g, %)

e Using the above Lemma, the product of two Gaussians N (o, ) and N (u1,11) is
Gaussian up to rescaling.

Proof.
exp (—(x — 110)?/2v9) x exp (—(x — p1)?/211)

1 1 1
= exp [—— ((— + —) 2 —2(@ + ﬂ)X—I— c)]
2 140 141 140 "

=v
/AN

7 N\

1
Y ,V(@Jrﬂ) :N-<V1AL0+V0M1 2% )

e 2 i o 1 vo+uvi o+
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Sum of Gaussians

Note: this is the vector form, and hence the scalar form holds trivially.

© X ~N(ux,Xx)and Y ~ N(py,Xy)

— aX +bY ~ N(aux + bpy,a’Ex + b*°Zy)
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Mixture of Two Gaussian Densities

e fi(x) is the density of N'(u1,0%) and f(x) is the density of A (u2,03)

e Question. What are the mean and the variance of the random variable Z which has
the following density f(x)?

f(x) = afi(x)+ (1 — a)f(x)

Answer:

E(Z) = aps + (1 — a)uz
var(Z) = (oza% + (1 — a)ag) + ([Oz,u% + (1 — a)u3] — [aps + (1 — Oé),uz]z)
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Linear Transformation

o Linear transformation3 preserves normality

Linear transformation of Normal
If X ~ N (p,0?), then for a# 0 and b, Y = aX + b ~ N(au + b, a%c?). }

e Thus, every normal rv can be | standardized '

If X ~ N(p,02), then Y = 2=~ N(0,1)

e Thus, we can make the table which records the following CDF values:

o) =B(Y <) =P(Y <y)= o= [ &Pt

3Strictly speaking, this is affine transformation.
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Knowing Distributions of Functions of RVs

If X ~ N(0,1), what is the distribution of Y = X?7
If X1, Xo ~ N(0,1), what is the distribution of Y = (X1 + X3)?

e Two techniques
o CDF-based technique

o Change-of-Variable technique

In this lecture note, we focus on the case of univarate random variables for
simplicity.
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CDF-based Technique

S1. Find the CDF: Fy(y) =P(Y <y)
S2. Differentiate the CDF to get the pdf fy(y): fy(y) = 4, Fv(y)
o Example. fx(x) = 3x%, 0 < x < 1. What is the pdf of Y = X??
Fy(y) =PB(Y <y) =P(X* <y) =P(X < /y) = Fx(\/)
o ;
:/ 3tdt =y2, 0<y<I1
0

d 3
) =g, ) =5vy, 0<y<1
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How to Get Random Samples of a Given Distribution? (1)

o Assume that X ~ exp(1), i.e., fx(x) = e ™ and Fx(x) =1 — e *. How to make a
programming code that gives random samples following the distribution X7

e Theorem. Probability Integral Theorem. Let X be a continuous rv with a strictly
monotonic CDF F(-). Then, if we define a new rv U as| U := F(X) |, then U

follows the uniform distribution over [0.1].

e Proof. Will show that Fy(u) = u, which is the CDF of a standard uniform rv.

Fu(u) = P(U < u) = P(F(X) < u) @ P(X < FY(u)) = F(FY(u)) = u,

where (x) is due to the strict monotonicity of F(-).
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How to Get Random Samples of a Given Distribution? (2)

Pseudo Code of getting a random sample with the distribution F(-).

Step 1. Get a random sample u over [0, 1] (most of software packages include this
capability of generating a random number generation)

Step 2. Get a value x = F~1(u).
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Change-of-Variables Technique: Univariate

e Chain rule of calculus: /f(g(x))g’(x)dx = / f(u)du, where u = g(x).

e Consider a rv X € [a, b] and an invertible, strictly increasing function U.

U=l(y)
Fr(y) =P(Y <) =PUX) <) =BX < U7 0) = [ fux)dx

U=(y) U=(y) ,
) = % / i (x)dx = % (UL U (v)dy
— (U (y))- %U—lm

e Including the case when U is strcitly decreasing,

fr(y) = (U ()) - | L u1(y)

dy

L6(4) March 11, 2025
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Change-of-Variables Technique: Multivariate (Optional)

e Theorem. Let fx(x) is the pdf of multivariate continuous random vector X. If
Y = U(X) is differentiable and invertible, the pdf of Y is given as:

F(y) = (U (y)) - |det (% u1<y))

-
e Example. For a bivariate rv X with its pdf f( (2)) — % exp (% (2) (2)) 7

b
d

consider Y = AX, where A = (i ) Then, we have the following pdf of Y:

1 1 1T . _
fy(y):%exp (—EyT(A 1) A 1y> lad — bc| 1
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Sums of Independent RVs

 (Pictorial) Meaningof Z=X+Y
e Example: Roll 2 dices

e Use convolution: (f * g)

Find Z's PMF: Find Z's PDF:
* pz(z) =D, cy Px(z —y)py(y) o fz(2) = |7 fx(z = y)fy(y)dy

Visit https://en.wikipedia.org/wiki/List_of_convolutions_of_
probability_distributions for some known convolution results.
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Statistics of Sums of Independent RVs

Nonetheless, finding the expectation and variance are easier

o Linearity of Expectation: E[x + y] = E[x] + E[y]. Note: True even if they are not
independent RVs.

o var[X + Y| = var[X] + var[Y]. Note: variance exhibits linearity only for independent
RVs, as there is no covariance

Other common cases:

e E[aX + b] = aE[X] + b
e var[aX + b| = a®var[X]

¢ E[Z?:l Xi] = 27:1 E[Xi]
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Further down the road
Law of Large Numbers

Let X1, X5...X, be independent and identically distributed random variables. The
average of these random variables (sample mean) converges to the expected value p

(population mean):
n
X
i=1

The Central Limit Thorem (Average Version)

Let X1, X>... X, be independent and identically distributed random variables. The
average of these random variables approaches a normal as n — oo :

= 2
X ()
ni:1 n

Where 1 = E[X;] and 02 = Var (X;).
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Shannon’s Information Theory

Claude Shannon (1948): A Mathematical Theory of Communication

Shannon's measure of information is the number of bits to represent the amount of
uncertainty (randomness) in a data source, and is defined as entropy

H=-> pilog(p;)
i=1

Where there are n symbols 1,2,... n, each with probability of occurrence of p;
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Justification of Shannon’s Entropy
* A set of possible events with probabilities p; (1 < i < n).

e Can we find a measure of how much “choice” is involved in the selection of the
event or of how uncertain we are of the outcome? Denote it as H(p1, p2,.-., pn).

e (Axiomatic approach) H() should satisfy the following properties:
o H should be continuous in each p;.

o H should be a monotonic increasing function of n. With equally likely events there is
more choice, or uncertainty, when there are more possible events.

o If a choice be broken down into two successive choices, the original H should be the
weighted sum of the individual values of H.

la Avs {B,C}: % vs% H(%a%)—i_H(%a%)
1b B vs C: % vs%
2AvstsC:%vs%vs% H(%,%,%)

L6(4) March 11, 2025
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Measure Distance Between Two Distributions

Applications in Computer Science:

e Machine Learning:

o Model Evaluation: Comparing predicted vs. true distributions.
o Generative Models: Ensuring generated data resembles real data.

e Information Theory:
o Encoding Efficiency: Measuring information loss.

Challenge: How to measure the distance between B(n, p; and B(np,, where B(n, p) is
the Binomial distribution?

e |lp1 — p2||? B(n=10,0.2) and B(n =10,0.1) vs B(n = 10,0.4) and B(n = 10,0.5)

e Lesson learned: need to compare the PMFs (PDFs), not the parameters
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Common Metrics

Euclidean (L») Distance:
1
o Nuyvllp = (i lui = vilP)?, p=2
o Not suitable for probability distributions.
Manhattan (L;) Distance:
@) p = 1
o lgnores underlying distribution properties.

Kullback-Leibler (KL) Divergence and its generalization:
o Asymmetric and be careful of its interpretation.

Wasserstein Distance (Earth Mover's Distance):

o Measures the minimum "cost” required to transform one distribution into another,
based on moving "mass’ in a metric space. It's particularly useful for distributions
defined on continuous spaces.

o Related to Optimal Transport.

L1(5) March 11, 2025 51 / 59



Kullback-Leibler (KL) Divergence

Notation:

e P: True distribution

e Q: Approximate distribution
e Dk (P || Q): KL divergence from @ to P

DkL(P || @) = Z P(x) log (P(X)> (discrete case)

Q(x)
DkL(P || Q) = /_OO p(x) log (%) dx (continuous case)
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Intuition behind KL

Dk (P || Q) = ZP(X Iog(
=) P(x) Iog

) (Z P(x)log Q(x) — Y P(x)log P(x))
Z P(x)log - ) = H(P, Q) — H(P)

H(P, Q): Average code length of a source P with estimated distribution Q
o log ﬁ: Use log ﬁ bits (assuming base = 2) to encode the message x.
o Expectation Over P: the average code length.

2. DkL(P || Q) describes the excessive number of bits needed to encode the true
distribution P using an estimated distribution Q.
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Properties

* Non-Negativity: Dk (P || Q) >0
o Zero Divergence: Dk (P || @) =0 <= P = Q almost everywhere
o Asymmetric: Dk (P || Q) # Dk (Q || P)

o Implications: Changing the order of distributions changes the divergence value.
o DkL(P || @) measures the expected information loss when @ is used to approximate P,

weighted by P.
o Different Emphasis: the asymmetry arises because P and Q place different weights on

outcomes.
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Example
Let P and () Be Simple Distributions

e Distribution P:
> P(0) = 0.9
> P(1)=0.1

e Distribution Q:
o Q(0)=0.5
> Q(1)=0.5

Calculate Dk (P || Q):

1
= 0.9 log (8 g +0.1log (8 5> ~ 0.9x0.84740.1x(—1.609) ~ 0.762—0.161 = 0.601 bits

Calculate Dk (Q || P):

0.5
— 0.5log (8 g) 1+0.5log (o 1) ~ 0.5%(—0.847)+0.5x1.609 ~ —0.423+0.805 = 0.382 bits
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Observation:
DxL(P || Q) > Dk(@ || P)



3. Why KL Divergence is Asymmetric

Expectation Basis

o DkL(P || @) measures the expected information loss when @ is used to approximate
P, weighted by P.

Different Emphasis

e The asymmetry arises because P and  place different weights on outcomes.

L1(5) March 11, 2025 56 / 59



Impact of Asymmetry on “Nearest” Distribution

e Task: Find a distribution @ that is “closest” to P based on a chosen divergence
measure.

Asymmetric Implications

1. Direction Matters:

o DkL(P || Q) aims to minimize information loss when approximating P with Q.
o Minimizing Dk (Q || P) focuses on different aspects, potentially highlighting different
“closeness.”
2. Mode Seeking vs. Mean Covering:
o DkL(P || @) tends to be mode-seeking:
> @ covers the modes of P but might miss some support, because . ..
o DkL(Q || P) tends to be mean-covering:

> @ covers all support of P, potentially assigning probability to regions where P has low
probability, because . ..
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An Example

Scenario: Approximating a Distribution

e True Distribution P: Highly concentrated around several values.
e Candidate Distribution Q: More spread out.

Using Dk (P | Q):

e ( adjusts to cover the peaks of P, potentially ignoring low-probability regions.

Using Dy (Q || P):

e  must cover all regions where P has support, avoiding assigning probability mass
where P is zero or near-zero.
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Choosing the Direction

Task Dependent:

* Information Loss Minimization: Use D (P || Q).
e Support Coverage: Use Dg (Q || P).

Model Selection:

e The asymmetry influences which aspects of the distribution are prioritized in
modeling.
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