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Data streams are everywhere

Telcos - phone calls

Satellite, radar, sensor data

Computer systems and network monitoring

Search logs, access logs

RSS feeds, social network activity

Websites, clickstreams, query streams

E-commerce, credit card sales
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Example 1: Online shop

Thousands of visits / day

Is this “customer” a robot?

Does this customer want to buy?

Is customer lost? Finding what s/he wants?

What products should we recommend to this user?

What ads should we show to this user?

Should we get more machines from the cloud to handle
incoming traffic?
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Example 2: Web searchers

Millions of queries / day

What are the top queries right now?

Which terms are gaining popularity now?

What ads should we show for this query and user?
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Example 3: Phone Company

Hundreds of millions of calls/day

Each call about 1000 bytes per switch

I.e., about 1Tb/month; must keep for billing

Is this call fraudulent?

Why do we get so many call drops in area X?

Should we reroute differently tomorrow?

Is this customer thinking of leaving us?

How to cross-sell / up-sell this customer?
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Data Streams: Modern times data

Data arrives as sequence of
items

At high speed

Forever

Can’t store them all

Can’t go back; or too slow

Evolving, non-stationary
reality https://www.youtube.com/

watch?v=ANXGJe6i3G8
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In algorithmic words ...

The Data Stream axioms:

1 One pass

2 Low time per item - read, process, discard

3 Sublinear memory - only summaries or sketches

4 Anytime, real-time answers

5 The stream evolves over time
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Computing in data streams

Approximate answers are often OK

Specifically, in learning and mining contexts

Often computable with surprisingly low memory, one pass
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Main ingredients: approximation and randomization

Algorithms use a source of independent random bits

So different runs give different outputs

But “most runs” are “approximately correct”
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Randomized algorithms

(ϵ, δ)-approximation

A randomized algorithm A (ϵ, δ)-approximates a function
f : X → R iff for every x ∈ X , with probability ≥ 1− δ

(absolute approximation) |A(x)− f (x)| < ϵ

(relative approximation) |A(x)− f (x)| < ϵf (x)

Often ϵ, δ are given as inputs to A, ϵ is accuracy, δ is
confidence
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Randomized algorithms

In traditional statistics one roughly describes a random variable X
by giving µ = E [X ] and σ2 = Var(X )

Obtaining (ϵ, δ)-approximation
For any X , there is an algorithm that takes m independent samples
of X and outputs an estimate µ̂ such that

Pr [|µ̂− µ| ≤ ϵ] ≥ 1− δ

for

m = O(
σ2

ϵ2
ln

1

δ
)

This is general. (Proof omitted)
For specific X there may be more sample-efficient methods.
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Some problems on data streams

Keeping a uniform sample

Counting total elements

Approximating a discrete distribution

Approximating distances

The solutions

are interesting in streaming mode

reduce memory

demonstrate some typical algorithmic tricks
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Sampling: dealing with velocity

At time t, process element x[t] with probability α

Compute your query on the sampled elements only

You process about αt elements instead of t, then
extrapolate.
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Sampling: dealing with velocity AND memory

Similar problem:

Keep a uniform sample S of elements of some size k

At every time t, each of the first t elements is in S with
probability k/t

Key challenge:

How to make early elements as likely to be in S as later
elements?
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Reservoir sampling

Reservoir Sampling [Vitter85]:

Add the first k stream elements to S

Choose to keep t-th item with probability k/t

If chosen, replace one element from S at random
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Reservoir sampling: why does it work?

Claim

For every t, for every i ≤ t,

Pi ,t := Pr [si in sample at time t] =
k

t

Proof: Suppose true at time t. At time t + 1,

Pi+1,t+1 := Pr [si+1 in sample at time t + 1] =
k

t + 1

and for i ≤ t, si is in the sample S if

it was before, and

NOT (st+1 sampled and it kicks out exactly si )

Pi ,t+1 =
k

t
· (1− k

t + 1
· 1
k
) =

k

t
· (1− 1

t + 1
)

=
k

t
· t

t + 1
=

k

t + 1
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