L2: Approximate Algorithms

Wei Wang @ HKUST(GZ)

March 25, 2025

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms

イロン イボン イヨン イヨン 三日

2 Sketching: Count-Min Sketch

- Problem Definition: Frequency Estimators
- Preliminary: Hash Function
- Preliminary: What does it mean for an approximation to be "good"?
- Count-Min Sketch

(ロ) (同) (目) (日) (日) (日)

How many items have we read so far?

To count up to t elements **exactly**, log t bits are **necessary** Morris's counter: Count approximately using log log t bits Can count up to 1 billion with log log $10^9 = 5$ bits

Approximate counting: Saving 1 bit

Approximate counting, v1

Init: $c \leftarrow 0$

Update:

draw a random number $x \in [0, 1]$ if $(x \le 1/2)$ $c \leftarrow c + 1$ Query: return 2c

E[2c] = t, $\sigma = \sqrt{t/2}$ [Why? Proof?] Space $\log(t/2) = \log t - 1 \Rightarrow$ we saved 1 bit! Any problem?

Approximate counting, v1

Init: $c \leftarrow 0$

Update:

draw a random number $x \in [0, 1]$ if $(x \le 1/2)$ $c \leftarrow c + 1$ Query: return 2c

E[2c] = t, $\sigma = \sqrt{t/2}$ [Why? Proof?] Space $\log(t/2) = \log t - 1 \Rightarrow$ we saved 1 bit! Any problem?

Proof: Let the returned value be *r*. Let I_i be the indicator variable when the *i*-item comes. Then $E[r] = E[\sum I_i \times 1] = \sum E[I_i] = t/2$.

Approximate counting: Saving k bits

Approximate counting, v2

Init: $c \leftarrow 0$

Update:

draw a random number $x \in [0, 1]$ if $(x \le 2^{-k})$ $c \leftarrow c + 1$ Query: return $2^k c$

 $E[c] = t/2^k$, $\sigma \simeq \sqrt{t/2^k}$ Memory log $t - k \Rightarrow$ we saved k bits!

 $x \leq 2^{-k}$: AND of k random bits, log k memory

Morris' counter [Morris77]

Init: $c \leftarrow 0$

Update:

draw a random number $x \in [0, 1]$ if $(x \le 2^{-c}) \ c \leftarrow c + 1$ Query: return $2^c - 1$

$$E[c] \simeq \log t$$
, $E[2^c - 1] = t$, $\sigma \simeq t/\sqrt{2}$

Memory = bits used to hold $c = \log c = \log \log t$ bits

Proof

7/48

The complete proof is fairly lengthy. The gist is to show $E[2^c] = t + 1$

Morris' approximate counter

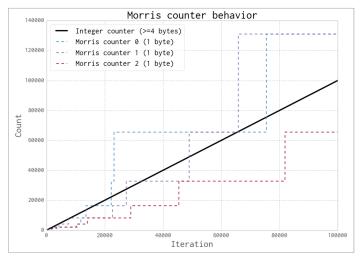


Figure 11-3. Three 1-byte Morris counters vs. an 8-byte integer

Figure: From High Performance Python, M. Gorelick & I. Oswald. O'Reilly 2014 Wei Wang @ HKUST(GZ) L2: Approximate Algorithms

Problem: large variance, $\sigma \approx 0.7t$

イロン イボン イヨン イヨン 三日

- Run *r* parallel, independent copies of the algorithm (**boosting**)
- On Query, average their estimates
- $E[\text{Query}] \approx t$, $\sigma \approx t/\sqrt{2r}$
- Space *r* log log *t* bits
- Time per item multiplied by r

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

Use basis b < 2 instead of basis 2:

- Places t in the series $1, b, b^2, \ldots, b^i, \ldots$ ("resolution" b)
- $E[b^c] \approx t$, $\sigma \approx \sqrt{(b-1)/2} \cdot t$
- Space $\log \log t \log \log b$ bits $(> \log \log t, \text{ because } b < 2)$
- For b = 1.08, 3 extra bits, $\sigma \approx 0.2t$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

Count-Min Sketches

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Frequency Estimators

- A **frequency estimator** is a data structure supporting the following operations:
 - increment(x), which increments the number of times that x has been seen, and
 - estimate(x), which returns an estimate of the frequency of x.
- Using BSTs, we can solve this in space Θ(n) with worst-case O(log n) costs on the operations.
- Using hash tables, we can solve this in space $\Theta(n)$ with expected O(1) costs on the operations.

Frequency Estimators

- Frequency estimation has many applications:
 - Search engines: Finding frequent search queries.
 - Network routing: Finding common source and destination addresses.
- In these applications, $\Theta(n)$ memory can be impractical.
- **Goal:** Get approximate answers to these queries in sublinear space.

[Cormode-Muthukrishnan 04] Like Space Saving:

- Provides an approximation f_x^r to f_x , for every x
- Can be used (less directly) to find θ -heavy hitters
- Uses memory $O(1/\theta)$

Unlike Space Saving:

- It is randomized hash functions instead of counters
- Supports additions and deletions
- Can be used as basis for several other queries

What is the meaning of f_x^r and f_x ?

- Design a simple data structure that, intuitively, gives you a good estimate.
- Use a sum of indicator variables and linearity of expectation to prove that, on expectation, the data structure is pretty close to correct.
- Use a concentration inequality to show that, with decent probability, the data structure's output is close to its expectation.
- Q Run multiple copies of the data structure in parallel to amplify the success probability.

Outline

- Hash Functions
 - Understanding our basic building blocks.
- Quality of Approximation
- Count-Min Sketches
 - Estimating how many times we've seen something.
- Concentration Inequalities
 - "Correct on expectation" versus "correct with high probability."
- Probability Amplification
 - Increasing our confidence in our answers.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Hash functions are used extensively in programming and software engineering:
 - They make hash tables possible: think C++ std::hash, Python's __hash__, or Java's Object.hashCode().
 - They're used in cryptography: SHA-256, HMAC, etc.
- **Question:** When we're in Theoryland, what do we mean when we say "hash function?"

- In Theoryland, a hash function is a function from some domain called the **universe** (typically denoted U) to some codomain.
- The codomain is usually a set of the form $[m] = \{0, 1, 2, 3, \dots, m-1\}$

 $h: \mathcal{U} \to [m]$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

- Intuition: No matter how clever you are with designing a hash function, that hash function isn't random, and so there will be pathological inputs.
 - You can formalize this with the pigeonhole principle.
- Idea: Rather than finding the One True Hash Function, we'll assume we have a collection of hash functions to pick from, and we'll choose which one to use randomly.

- A **family** of hash functions is a set \mathcal{H} of hash functions with the same domain and codomain.
- We can then introduce randomness into our data structures by sampling a random hash function from *H*.
- **Key Point:** The randomness in our data structures almost always derives from the random choice of hash functions, not from the data.

Data is adversarial. Hash function selection is random.

• **Question:** What makes a family of hash functions \mathcal{H} a "good" family of hash functions?

《曰》《圖》《臣》《臣》 [臣]

- **Goal:** If we pick *h* ∈ *H* uniformly at random, then *h* should distribute elements uniformly randomly.
- **Problem:** A hash function that distributes *n* elements uniformly at random over [*m*] requires Ω(*n* log *m*) space in the worst case.
- **Question:** Do we actually need true randomness? Or can we get away with something weaker?

イロト イヨト イヨト イヨト

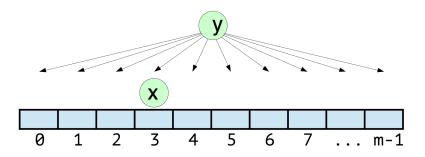
-2

- Distribution Property: Each element should have an equal probability of being placed in each slot.
- For any x ∈ U and random h ∈ H, the value of h(x) is uniform over [m].
- Some "obviously bad" hash functions obey this rule. How is this possible?

- Distribution Property: Each element should have an equal probability of being placed in each slot.
- For any x ∈ U and random h ∈ H, the value of h(x) is uniform over [m].
- Some "obviously bad" hash functions obey this rule. How is this possible?



- Distribution Property: Each element should have an equal probability of being placed in each slot.
- For any x ∈ U and random h ∈ H, the value of h(x) is uniform over [m].
- Problem: This rule doesn't guarantee that elements are spread out.



イロト イヨト イヨト イヨト

æ

- Distribution Property: Each element should have an equal probability of being placed in each slot.
 - For any x ∈ U and random h ∈ H, the value of h(x) is uniform over [m].
- Independence Property: Where one element is placed shouldn't impact where a second goes.
 - For any distinct $x, y \in U$ and random $h \in H$, h(x) and h(y) are independent random variables.

- Distribution Property: Each element should have an equal probability of being placed in each slot.
 - For any x ∈ U and random h ∈ H, the value of h(x) is uniform over [m].
- Independence Property: Where one element is placed shouldn't impact where a second goes.
 - For any distinct $x, y \in U$ and random $h \in H$, h(x) and h(y) are independent random variables.
- A family of hash functions \mathcal{H} is called **2-independent** (or **pairwise independent**) if it satisfies the distribution and independence properties.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ 三 ○

- For any x ∈ U and random h ∈ H, the value of h(x) is uniform over [m].
- For any distinct $x, y \in U$ and random $h \in H$, h(x) and h(y) are independent random variables.
- Intuition: 2-independence means any pair of elements is unlikely to collide.
- Proof:

- For any x ∈ U and random h ∈ H, the value of h(x) is uniform over [m].
- For any distinct x, y ∈ U and random h ∈ H, h(x) and h(y) are independent random variables.
- Intuition: 2-independence means any pair of elements is unlikely to collide.
- Proof:

$$\Pr[h(x) = h(y)] = \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$

- For any x ∈ U and random h ∈ H, the value of h(x) is uniform over [m].
- For any distinct x, y ∈ U and random h ∈ H, h(x) and h(y) are independent random variables.
- Intuition: 2-independence means any pair of elements is unlikely to collide.
- Proof:

$$\Pr[h(x) = h(y)] = \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$
$$= \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]$$

- For any x ∈ U and random h ∈ H, the value of h(x) is uniform over [m].
- For any distinct x, y ∈ U and random h ∈ H, h(x) and h(y) are independent random variables.
- Intuition: 2-independence means any pair of elements is unlikely to collide.
- Proof:

$$\Pr[h(x) = h(y)] = \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]$$
$$= \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]$$
$$= \sum_{i=0}^{m-1} \frac{1}{m^2} = \frac{1}{m}$$

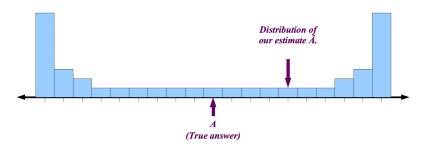
Outline

- Hash Functions
 - Understanding our basic building blocks.
- Quality of Approximation
- Count-Min Sketches
 - Estimating how many times we've seen something.
- Concentration Inequalities
 - "Correct on expectation" versus "correct with high probability."
- Probability Amplification
 - Increasing our confidence in our answers.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What does it mean for an approximation to be "good"?

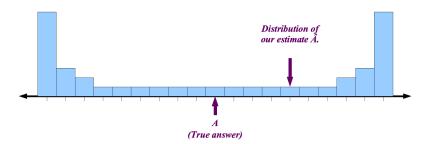
- Let A be the true answer.
- Let \hat{A} be a random variable denoting our estimate.
- This would not make for a good estimate. However, we have $\mathbb{E}[\hat{A}] = A$



イロト イポト イヨト イヨト 二日

What does it mean for an approximation to be "good"?

- Let A be the true answer.
- Let \hat{A} be a random variable denoting our estimate.
- This would not make for a good estimate. However, we have $\mathbb{E}[\hat{A}] = A$



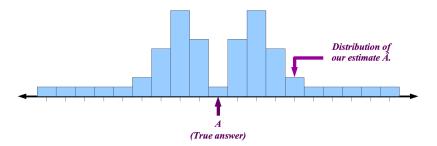
Observation 1: Being correct in expectation isn't sufficient.

28/48

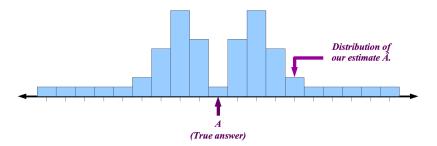
イロト イヨト イヨト

What does it mean for an approximation to be "good"?

- Let A be the true answer.
- Let \hat{A} be a random variable denoting our estimate.
- It's unlikely that we'll get the right answer, but we're probably going to be close.

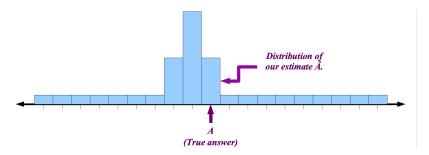


- Let A be the true answer.
- Let \hat{A} be a random variable denoting our estimate.
- It's unlikely that we'll get the right answer, but we're probably going to be close.



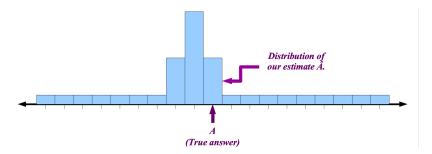
Observation 2: The difference $|\hat{A} - A|$ between our estimate and the truth should ideally be small.

- Let A be the true answer.
- Let \hat{A} be a random variable denoting our estimate.
- This estimate skews low, but it's very close to the true value.



イロト イポト イヨト イヨト

- Let A be the true answer.
- Let \hat{A} be a random variable denoting our estimate.
- This estimate skews low, but it's very close to the true value.

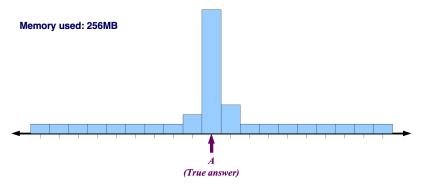


Observation 3: An estimate doesn't have to be unbiased to be useful.

ヘロア 人間 アメヨア 人間アー

臣

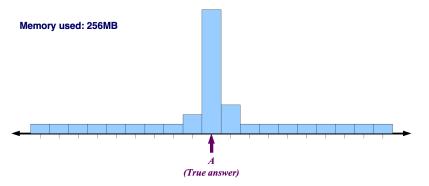
- Let A be the true answer.
- Let \hat{A} be a random variable denoting our estimate.
- The more resources we allocate, the better our estimate should be.



イロト イヨト イヨト イヨト

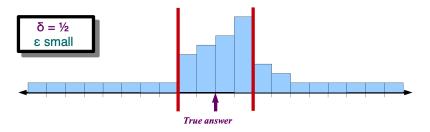
臣

- Let A be the true answer.
- Let \hat{A} be a random variable denoting our estimate.
- The more resources we allocate, the better our estimate should be.



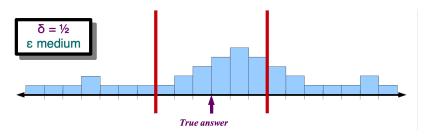
Observation 4: A good approximation should be tunable.

- Suppose there are two tunable values:
 - $\varepsilon \in (0,1]$ represents accuracy
 - $\delta \in (0,1]$ represents confidence
- Goal: Make an estimator \hat{A} for some quantity A where
 - With probability at least $1-\delta$ (Probably)
 - $|\hat{A} A| \le \varepsilon \cdot \text{size(input)}$ (Approximately Correct)
 - for some measure of the size of the input



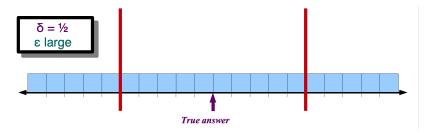
・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

- Suppose there are two tunable values:
 - $\varepsilon \in (0,1]$ represents accuracy
 - $\delta \in (0,1]$ represents confidence
- Goal: Make an estimator \hat{A} for some quantity A where
 - With probability at least $1-\delta$ (Probably)
 - $|\hat{A} A| \le \varepsilon \cdot \text{size(input)}$ (Approximately Correct)
 - for some measure of the size of the input

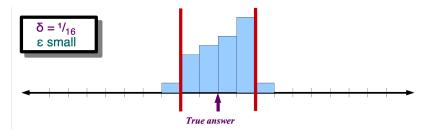


・ロト ・四ト ・ヨト ・ヨト

- Suppose there are two tunable values:
 - $\varepsilon \in (0,1]$ represents accuracy
 - $\delta \in (0,1]$ represents confidence
- Goal: Make an estimator \hat{A} for some quantity A where
 - With probability at least $1-\delta$ (Probably)
 - $|\hat{A} A| \le \varepsilon \cdot \text{size(input)}$ (Approximately Correct)
 - for some measure of the size of the input



- Suppose there are two tunable values:
 - $\varepsilon \in (0,1]$ represents accuracy
 - $\delta \in (0,1]$ represents confidence
- Goal: Make an estimator \hat{A} for some quantity A where
 - With probability at least $1-\delta$ (Probably)
 - $|\hat{A} A| \le \varepsilon \cdot \text{size(input)}$ (Approximately Correct)
 - for some measure of the size of the input



イロト イヨト イヨト イヨト

Outline

- Hash Functions
 - Understanding our basic building blocks.
- Quality of Approximation
- Count-Min Sketches
 - Estimating how many times we've seen something.
- Concentration Inequalities
 - "Correct on expectation" versus "correct with high probability."
- Probability Amplification
 - Increasing our confidence in our answers.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- Idea: Store a fixed number of counters and assign a counter to each x_i ∈ U. Multiple x_i's might be assigned to the same counter.
- To increment(x), increment the counter for x.
- To estimate(x), read the value of the counter for x.

(ロ) (四) (三) (三) (三)

Our Initial Structure

- We can model "assigning each x_i to a counter" by using hash functions.
- Choose, from a family of 2-independent hash functions \mathcal{H} , a uniformly-random hash function $h : \mathcal{U} \to [w]$.
- Create an array count of w counters, each initially zero.
 We'll choose w later on.
- To increment(x), increment count[h(x)]. To
- estimate(x), return count[h(x)].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For each $x_i \in U$, let a_i denote the number of times we've seen x_i .

Similarly, let \hat{a}_i denote our estimated value of the frequency of x_i .

Goal: Bound the probability that the error $(\hat{a}_i - a_i)$ is too high.

- Let's look at $\hat{a}_i = \operatorname{count}[h(x_i)]$ for some choice of x_i . For
- each element x_j:
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to $count[h(x_i)]$. If
 - $h(x_i) \neq h(x_j)$, then x_j contributes 0 to $count[h(x_i)]$.
- To pin this down precisely, let's define a set of random variables X_1, X_2, \ldots , as follows:

$$X_j = \begin{cases} 1 & \text{if } h(x_i) = h(x_j) \\ 0 & \text{otherwise} \end{cases}$$

Each of these variables are called an **indicator random variable**, since it "indicates" whether some event occurs.

<ロ> (四) (四) (三) (三) (三) (三)

- Let's look at $\hat{a}_i = \operatorname{count}[h(x_i)]$ for some choice of h.
- For each element x_j:
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to count $[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to $\operatorname{count}[h(x_i)]$.
- To pin this down precisely, let's define a set of random variables *X*₁, *X*₂, . . ., as follows:

$$X_j = \begin{cases} 1 & \text{if } h(x_i) = h(x_j) \\ 0 & \text{otherwise} \end{cases}$$

• The value of $\hat{a}_i - a_i$ is then given by

$$\hat{a}_i - a_i = \sum_{j \neq i} a_j X_j$$

$$\mathbb{E}[\hat{a}_i - a_i] = \mathbb{E}[\sum_{j \neq i} a_j X_j]$$

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 - のへで

$$\mathbb{E}[\hat{a}_i - a_i] = \mathbb{E}[\sum_{j \neq i} a_j X_j]$$

= $\sum_{j \neq i} \mathbb{E}[a_j X_j]$ (linearity of expectation)

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 - のへで

$$\begin{split} \mathbb{E}[\hat{a}_i - a_i] &= \mathbb{E}[\sum_{j \neq i} a_j X_j] \\ &= \sum_{j \neq i} \mathbb{E}[a_j X_j] \text{ (linearity of expectation)} \\ &= \sum_{j \neq i} a_j \mathbb{E}[X_j] \quad \left(\begin{array}{c} \text{the randomness comes from} \\ \text{the choice of hash function} \end{array} \right) \end{split}$$

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 - のへで

$$\begin{split} \mathbb{E}[\hat{a}_i - a_i] &= \mathbb{E}[\sum_{j \neq i} a_j X_j] \\ &= \sum_{j \neq i} \mathbb{E}[a_j X_j] \text{ (linearity of expectation)} \\ &= \sum_{j \neq i} a_j \mathbb{E}[X_j] \quad \left(\begin{array}{c} \text{the randomness comes from} \\ \text{the choice of hash function} \end{array} \right) \\ &= \sum_{j \neq i} \frac{a_j}{w} \quad \left(\mathbb{E}[X_j] = 1 \cdot \Pr[h(x_i) = h(x_j)] = \frac{1}{w} \right) \end{split}$$

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 - のへで

$$\mathbb{E}[\hat{a}_i - a_i] = \mathbb{E}[\sum_{j \neq i} a_j X_j]$$

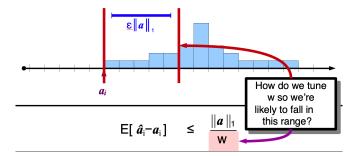
$$= \sum_{j \neq i} \mathbb{E}[a_j X_j] \text{ (linearity of expectation)}$$

$$= \sum_{j \neq i} a_j \mathbb{E}[X_j] \left(\begin{array}{c} \text{the randomness comes from} \\ \text{the choice of hash function} \end{array} \right)$$

$$= \sum_{j \neq i} \frac{a_j}{w} \left(\mathbb{E}[X_j] = 1 \cdot \Pr[h(x_i) = h(x_j)] = \frac{1}{w} \right)$$

$$\leq \frac{\|a\|_1}{w}$$

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 - のへで



- We don't know the exact distribution of this random variable.
- However, we have a one-sided error: our estimate can never be lower than the true value. This means that â_i − a_i ≥ 0.
- Markov's inequality says that if X is a nonnegative random variable, then $\Pr[X \ge c] \le \frac{\mathbb{E}[X]}{c}$

$$\Pr[\hat{a}_i - a_i > \varepsilon \|a\|_1] \leq \frac{\mathbb{E}[\hat{a}_i - a_i]}{\varepsilon \|a\|_1}$$

臣

$$\mathbb{E}[\hat{a}_i - a_i] \leq \frac{\|a\|_1}{w}$$

$$\Pr[\hat{a}_i - a_i > \varepsilon ||a||_1] \le \frac{\mathbb{E}[\hat{a}_i - a_i]}{\varepsilon ||a||_1}$$
$$\le \frac{||a||_1}{w} \cdot \frac{1}{\varepsilon ||a||_1}$$
$$= \frac{1}{\varepsilon w}$$

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- Goal: Make an estimator \hat{A} for some quantity A where
 - With probability at least 1δ (Probably)
 - $|\hat{A} A| \le \varepsilon \cdot \text{size(input)}$ (Approximately Correct)
 - for some measure of the size of the input

•
$$\Pr[\hat{a}_i - a_i > \varepsilon \|a\|_1] \le \frac{1}{\varepsilon w}$$

• Initial Idea: Pick $w = \varepsilon^{-1} \delta^{-1}$. Then, $\Pr[\hat{a}_i - a_i > \varepsilon ||a||_1] \le \delta$

Question

Suppose we're counting 1,000 distinct items. If we want our estimate to be within $\varepsilon ||a||_1$ of the true value with 99.9% probability, how much memory do we need?

Answer: The memory requirement is $1,000\varepsilon^{-1}$. Can we do better?

- Goal: Make an estimator \hat{A} for some quantity A where
 - With probability at least $1-\delta$ (Probably)
 - $|\hat{A} A| \le \varepsilon \cdot \text{size(input)}$ (Approximately Correct)
 - for some measure of the size of the input

•
$$\Pr[\hat{a}_i - a_i > \varepsilon ||a||_1] \le \frac{1}{\varepsilon w}$$

• Revised Idea: Pick $w = e\varepsilon^{-1}$. Then, $\Pr[\hat{a}_i - a_i > \varepsilon ||a||_1] \le e^{-1}$

Question

This simple data structure, by itself is likely to be wrong. What happens if we run several of its copies in parallel?

Running in Parallel

- Let's suppose that we run *d* independent copies of this data structure. Each has its own independently randomly chosen hash function.
- To increment(x) in the overall structure, we call increment(x) on each of the underlying data structures.
- The probability that at least one of them provides a good estimate is quite high.

Question How do you know which estimator is correct?

イロト イヨト イヨト イヨト

ъ

Running in Parallel

- Let's suppose that we run *d* independent copies of this data structure. Each has its own independently randomly chosen hash function.
- To increment(x) in the overall structure, we call increment(x) on each of the underlying data structures.
- The probability that at least one of them provides a good estimate is quite high.

Question How do you know which estimator is correct? • The smallest estimate returned has the least 'noise' and that's the best guess for the frequency.

Running in Parallel: Error Bound

- Revised Idea: Pick $w = e\varepsilon^{-1}$. Then, $\Pr[\hat{a}_i - a_i > \varepsilon ||a||_1] \le e^{-1}$.
- Let \hat{a}_{ij} be the estimate from the *j*th copy of the data structure.
- Our final estimate is defined as $\min\{\hat{a}_{ij}\}$.

$$\Pr[\min\{\hat{a}_{ij}\} - a_i > \varepsilon ||a||_1]$$

=
$$\Pr\left[\bigwedge_{j=1}^d (\hat{a}_{ij} - a_i > \varepsilon ||a||_1)\right]$$

=
$$\prod_{j=1}^d \Pr[\hat{a}_{ij} - a_i > \varepsilon ||a||_1]$$

$$\leq \prod_{j=1}^d e^{-1} = e^{-d}$$

Running in Parallel

- Goal: Make an estimator \hat{A} for some quantity A where
 - With probability at least 1δ (Probably)
 - $|\hat{A} A| \le \varepsilon \cdot \text{size(input)}$ (Approximately Correct)
 - for some measure of the size of the input
- $\Pr[\min{\{\hat{a}_{ij}\}} a_i > \varepsilon ||a||_1] \le e^{-d}$
- Idea: Pick $d = -\ln \delta = \ln \delta^{-1}$. Then, $\Pr[\min\{\hat{a}_{ij}\} - a_i > \varepsilon ||a||_1] \le \delta$

h ₁	31	41	59	26	53		58	T
h	27	18	28	18	28		45	а
h₃	16	18	3	39	88		75	= [ln δ-1]
		· · · · · · · · · · · · · · · · · · ·						
<mark>h</mark> ₫	69	31	47	18	5		59	

46/48

Sampled uniformly and independently from a 2independent family of hash functions

The Count-Min Sketch

- Update and query times are $\Theta(d)$, which is $\Theta(\log \delta^{-1})$.
- Space usage: $\Theta(\varepsilon^{-1} \cdot \log \delta^{-1})$ counters.
 - This can be significantly better than just storing a raw frequency count!
- Provides an estimate to within $\varepsilon \|\mathbf{a}\|_1$ with probability at least $1-\delta$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 重 - のへで

Major Ideas From Today

- **2-independent hash families** are useful when we want to keep collisions low.
- A "good" approximation of some quantity should have tunable **confidence** and **accuracy** parameters.
- **Sums of indicator variables** are useful for deriving expected values of estimators.
- Concentration inequalities like Markov's inequality are useful for showing estimators don't stay too much from their expected values.
- Good estimators can be built from multiple parallel copies of weaker estimators.
- Randomization opens up new routes for tradeoffs in data structures:
 - Trade worst-case guarantees for average-case guarantees.
 - Trade exact answers for approximate answers.
- These data structures are used extensively in practice.

୬**୯**୯ 48/48