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Counting Items

How many items have we read so far?

To count up to t elements exactly, log t bits are necessary

Morris’s counter: Count approximately using log log t bits

Can count up to 1 billion with log log 109 = 5 bits

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms



4/48

Approximate counting: Saving 1 bit

Approximate counting, v1
Init: c ← 0
Update:

draw a random number x ∈ [0, 1]
if (x ≤ 1/2)

c ← c + 1
Query: return 2c

E [2c] = t, σ =
√
t/2 Why? Proof?

Space log(t/2) = log t − 1 ⇒ we saved 1 bit!
Any problem?

Proof: Let the returned value be r . Let Ii be the indicator variable
when the i-item comes. Then E [r ] = E [

∑
Ii × 1] =

∑
E [Ii ] = t/2.
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Approximate counting: Saving k bits

Approximate counting, v2
Init: c ← 0
Update:

draw a random number x ∈ [0, 1]
if (x ≤ 2−k)

c ← c + 1
Query: return 2kc

E [c] = t/2k , σ ≃
√

t/2k

Memory log t − k ⇒ we saved k bits!

x ≤ 2−k : AND of k random bits, log k memory
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Approximate counting: Morris’ counter

Morris’ counter [Morris77]
Init: c ← 0
Update:

draw a random number x ∈ [0, 1]
if (x ≤ 2−c) c ← c + 1

Query: return 2c − 1

E [c] ≃ log t, E [2c − 1] = t, σ ≃ t/
√
2

Memory = bits used to hold c = log c = log log t bits
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Proof By induction

The complete proof is fairly lengthy. The gist is to show
E [2c ] = t + 1
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Morris’ approximate counter

Figure: From High Performance Python, M. Gorelick & I. Oswald. O’Reilly
2014
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Morris’ approximate counter

Problem: large variance, σ ≈ 0.7t
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Reducing the variance, method I

Run r parallel, independent copies of the algorithm
(boosting)

On Query, average their estimates

E [Query] ≈ t, σ ≈ t/
√
2r

Space r log log t bits

Time per item multiplied by r
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Reducing the variance, method II

Use basis b < 2 instead of basis 2:

Places t in the series 1, b, b2, . . . , bi , . . . (“resolution” b)

E [bc ] ≈ t, σ ≈
√

(b − 1)/2 · t
Space log log t − log log b bits (> log log t, because b < 2)

For b = 1.08, 3 extra bits, σ ≈ 0.2t
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Count-Min Sketches
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Frequency Estimators

A frequency estimator is a data structure supporting the
following operations:

increment(x), which increments the number of times that x
has been seen, and
estimate(x), which returns an estimate of the frequency of x.

Using BSTs, we can solve this in space Θ(n) with worst-case
O(log n) costs on the operations.

Using hash tables, we can solve this in space Θ(n) with
expected O(1) costs on the operations.
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Frequency Estimators

Frequency estimation has many applications:

Search engines: Finding frequent search queries.
Network routing: Finding common source and destination
addresses.

In these applications, Θ(n) memory can be impractical.

Goal: Get approximate answers to these queries in sublinear
space.
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The Count-Min Sketch

[Cormode-Muthukrishnan 04]
Like Space Saving:

Provides an approximation f rx to fx , for every x

Can be used (less directly) to find θ-heavy hitters

Uses memory O(1/θ)

Unlike Space Saving:

It is randomized - hash functions instead of counters

Supports additions and deletions

Can be used as basis for several other queries

What is the meaning of f rx and fx?
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How to Build an Estimator

1 Design a simple data structure that, intuitively, gives you a
good estimate.

2 Use a sum of indicator variables and linearity of
expectation to prove that, on expectation, the data structure
is pretty close to correct.

3 Use a concentration inequality to show that, with decent
probability, the data structure’s output is close to its
expectation.

4 Run multiple copies of the data structure in parallel to amplify
the success probability.
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Outline

Hash Functions
Understanding our basic building blocks.

Quality of Approximation

Count-Min Sketches
Estimating how many times we’ve seen something.

Concentration Inequalities
“Correct on expectation” versus “correct with high
probability.”

Probability Amplification
Increasing our confidence in our answers.

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms



18/48

Preliminaries: Hash Functions

Hash functions are used extensively in programming and
software engineering:

They make hash tables possible: think C++ std::hash,
Python’s hash , or Java’s Object.hashCode().
They’re used in cryptography: SHA-256, HMAC, etc.

Question: When we’re in Theoryland, what do we mean
when we say “hash function?”
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Hashing in Theoryland

In Theoryland, a hash function is a function from some
domain called the universe (typically denoted U) to some
codomain.

The codomain is usually a set of the form [m] =
{0, 1, 2, 3, . . . ,m − 1}

h : U → [m]
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Hashing in Theoryland

Intuition: No matter how clever you are with designing a
hash function, that hash function isn’t random, and so there
will be pathological inputs.

You can formalize this with the pigeonhole principle.

Idea: Rather than finding the One True Hash Function, we’ll
assume we have a collection of hash functions to pick from,
and we’ll choose which one to use randomly.
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Families of Hash Functions

A family of hash functions is a set H of hash functions with
the same domain and codomain.

We can then introduce randomness into our data structures
by sampling a random hash function from H.
Key Point: The randomness in our data structures almost
always derives from the random choice of hash functions, not
from the data.

Data is adversarial.
Hash function selection is random.

Question: What makes a family of hash functions H a
“good” family of hash functions?

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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The Principles of Hash Functions

Goal: If we pick h ∈ H uniformly at random, then h should
distribute elements uniformly randomly.

Problem: A hash function that distributes n elements
uniformly at random over [m] requires Ω(n logm) space in the
worst case.

Question: Do we actually need true randomness? Or can we
get away with something weaker?
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The Principles of Hash Functions

Distribution Property: Each element should have an
equal probability of being placed in each slot.

For any x ∈ U and random h ∈ H, the value of h(x) is
uniform over [m].

Some “obviously bad” hash functions obey this rule. How is
this possible?

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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The Principles of Hash Functions

Distribution Property: Each element should have an
equal probability of being placed in each slot.

For any x ∈ U and random h ∈ H, the value of h(x) is
uniform over [m].

Problem: This rule doesn’t guarantee that elements are
spread out.

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms



25/48

The Principles of Hash Functions

Distribution Property: Each element should have an
equal probability of being placed in each slot.

For any x ∈ U and random h ∈ H, the value of h(x) is uniform
over [m].

Independence Property: Where one element is placed
shouldn’t impact where a second goes.

For any distinct x , y ∈ U and random h ∈ H, h(x) and h(y)
are independent random variables.

A family of hash functions H is called 2-independent (or
pairwise independent) if it satisfies the distribution and
independence properties.
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The Principles of Hash Functions

For any x ∈ U and random h ∈ H, the value of h(x) is
uniform over [m].

For any distinct x , y ∈ U and random h ∈ H, h(x) and h(y)
are independent random variables.

Intuition: 2-independence means any pair of elements is
unlikely to collide.

Proof:

Pr[h(x) = h(y)] =
m−1∑
i=0

Pr[h(x) = i ∧ h(y) = i ]

=
m−1∑
i=0

Pr[h(x) = i ] · Pr[h(y) = i ]

=
m−1∑
i=0

1

m2
=

1

m
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Outline

Hash Functions
Understanding our basic building blocks.

Quality of Approximation

Count-Min Sketches
Estimating how many times we’ve seen something.

Concentration Inequalities
“Correct on expectation” versus “correct with high
probability.”

Probability Amplification
Increasing our confidence in our answers.
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What does it mean for an approximation to be “good”?

Let A be the true answer.

Let Â be a random variable denoting our estimate.

This would not make for a good estimate. However, we have
E[Â] = A

Observation 1: Being correct in expectation isn’t sufficient.

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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What does it mean for an approximation to be “good”?

Let A be the true answer.

Let Â be a random variable denoting our estimate.

It’s unlikely that we’ll get the right answer, but we’re probably
going to be close.

Observation 2: The difference |Â− A| between our estimate
and the truth should ideally be small.
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What does it mean for an approximation to be “good”?

Let A be the true answer.

Let Â be a random variable denoting our estimate.

This estimate skews low, but it’s very close to the true value.

Observation 3: An estimate doesn’t have to be unbiased to be
useful.
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What does it mean for an approximation to be “good”?

Let A be the true answer.

Let Â be a random variable denoting our estimate.

The more resources we allocate, the better our estimate
should be.

Observation 4: A good approximation should be tunable.

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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What does it mean for an approximation to be “good”?

Suppose there are two tunable values:

ε ∈ (0, 1] represents accuracy
δ ∈ (0, 1] represents confidence

Goal: Make an estimator Â for some quantity A where

With probability at least 1− δ (Probably)
|Â− A| ≤ ε · size(input) (Approximately Correct)
for some measure of the size of the input

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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Outline

Hash Functions
Understanding our basic building blocks.

Quality of Approximation

Count-Min Sketches
Estimating how many times we’ve seen something.

Concentration Inequalities
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Probability Amplification
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Revisiting the Exact Solution

In the exact solution to the frequency estimation problem, we
maintained a single counter for each distinct element. This is
too space-inefficient.

Idea: Store a fixed number of counters and assign a counter
to each xi ∈ U . Multiple xi ’s might be assigned to the same
counter.

To increment(x), increment the counter for x.

To estimate(x), read the value of the counter for x.

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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Our Initial Structure

We can model “assigning each xi to a counter” by using hash
functions.

Choose, from a family of 2-independent hash functions H, a
uniformly-random hash function h : U → [w ].

Create an array count of w counters, each initially zero.

We’ll choose w later on.

To increment(x), increment count[h(x)]. To

estimate(x), return count[h(x)].

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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Analyzing our Structure

For each xi ∈ U , let ai denote the number of times we’ve seen xi .

Similarly, let âi denote our estimated value of the frequency of xi .

Goal: Bound the probability that the error (âi − ai ) is too high.

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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Analyzing this Structure

Let’s look at âi = count[h(xi )] for some choice of xi . For

each element xj :

If h(xi ) = h(xj), then xj contributes aj to count[h(xi )]. If
h(xi ) ̸= h(xj), then xj contributes 0 to count[h(xi )].

To pin this down precisely, let’s define a set of random
variables X1,X2, . . ., as follows:

Xj =

{
1 if h(xi ) = h(xj)

0 otherwise

Each of these variables are called an indicator random vari-
able, since it “indicates” whether some event occurs.

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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Analyzing this Structure

Let’s look at âi = count[h(xi )] for some choice of h.

For each element xj :

If h(xi ) = h(xj), then xj contributes aj to count[h(xi )].
If h(xi ) ̸= h(xj), then xj contributes 0 to count[h(xi )].

To pin this down precisely, let’s define a set of random
variables X1,X2, . . ., as follows:

Xj =

{
1 if h(xi ) = h(xj)

0 otherwise

The value of âi − ai is then given by

âi − ai =
∑
j ̸=i

ajXj

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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Analyzing this Structure

E[âi − ai ] = E[
∑
j ̸=i

ajXj ]

=
∑
j ̸=i

E[ajXj ] (linearity of expectation)

=
∑
j ̸=i

ajE[Xj ]

(
the randomness comes from
the choice of hash function

)

=
∑
j ̸=i

aj
w

(
E[Xj ] = 1 · Pr[h(xi ) = h(xj)] =

1

w

)

≤ ∥a∥1
w
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Analyzing this Structure

We don’t know the exact distribution of this random variable.

However, we have a one-sided error: our estimate can never
be lower than the true value. This means that âi − ai ≥ 0.

Markov’s inequality says that if X is a nonnegative random
variable, then Pr[X ≥ c] ≤ E[X ]

c

Pr[âi − ai > ε∥a∥1] ≤
E[âi − ai ]

ε∥a∥1
Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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Analyzing this Structure

E[âi − ai ] ≤
∥a∥1
w

Pr[âi − ai > ε∥a∥1] ≤
E[âi − ai ]

ε∥a∥1

≤ ∥a∥1
w
· 1

ε∥a∥1

=
1

εw
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Analyzing this Structure

Goal: Make an estimator Â for some quantity A where

With probability at least 1− δ (Probably)
|Â− A| ≤ ε · size(input) (Approximately Correct)
for some measure of the size of the input

Pr[âi − ai > ε∥a∥1] ≤ 1
εw

Initial Idea: Pick w = ε−1δ−1. Then, Pr[âi − ai > ε∥a∥1] ≤ δ

Question

Suppose we’re counting 1,000 distinct items. If we want our
estimate to be within ε∥a∥1 of the true value with 99.9%
probability, how much memory do we need?

Answer: The memory requirement is 1, 000ε−1.
Can we do better?

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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Analyzing this Structure

Goal: Make an estimator Â for some quantity A where

With probability at least 1− δ (Probably)
|Â− A| ≤ ε · size(input) (Approximately Correct)
for some measure of the size of the input

Pr[âi − ai > ε∥a∥1] ≤ 1
εw

Revised Idea: Pick w = eε−1. Then,
Pr[âi − ai > ε∥a∥1] ≤ e−1

Question

This simple data structure, by itself is likely to be wrong.
What happens if we run several of its copies in parallel?

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms
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Running in Parallel

Let’s suppose that we run d independent copies of this data
structure. Each has its own independently randomly chosen
hash function.
To increment(x) in the overall structure, we call
increment(x) on each of the underlying data structures.
The probability that at least one of them provides a good
estimate is quite high.

Question

How do you know which estimator is correct?

The smallest estimate returned has the least ‘noise’ and
that’s the best guess for the frequency.
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Running in Parallel: Error Bound

Revised Idea: Pick w = eε−1. Then,
Pr[âi − ai > ε∥a∥1] ≤ e−1.

Let âij be the estimate from the jth copy of the data structure.

Our final estimate is defined as min{âij}.

Pr[min{âij} − ai > ε∥a∥1]

=Pr

 d∧
j=1

(âij − ai > ε∥a∥1)


=

d∏
j=1

Pr[âij − ai > ε∥a∥1]

≤
d∏

j=1

e−1 = e−d
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Running in Parallel

Goal: Make an estimator Â for some quantity A where

With probability at least 1− δ (Probably)
|Â− A| ≤ ε · size(input) (Approximately Correct)
for some measure of the size of the input

Pr[min{âij} − ai > ε∥a∥1] ≤ e−d

Idea: Pick d = − ln δ = ln δ−1. Then,
Pr[min{âij} − ai > ε∥a∥1] ≤ δ
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The Count-Min Sketch

Update and query times are Θ(d), which is Θ(log δ−1).

Space usage: Θ(ε−1 · log δ−1) counters.

This can be significantly better than just storing a raw
frequency count!

Provides an estimate to within ε∥a∥1 with probability at least
1− δ.

Wei Wang @ HKUST(GZ) L2: Approximate Algorithms



48/48

Major Ideas From Today

2-independent hash families are useful when we want to
keep collisions low.

A “good” approximation of some quantity should have
tunable confidence and accuracy parameters.

Sums of indicator variables are useful for deriving expected
values of estimators.

Concentration inequalities like Markov’s inequality are
useful for showing estimators don’t stay too much from their
expected values.

Good estimators can be built from multiple parallel
copies of weaker estimators.

Randomization opens up new routes for tradeoffs in data
structures:

Trade worst-case guarantees for average-case guarantees.
Trade exact answers for approximate answers.

These data structures are used extensively in practice.
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