Probabilistic Counting

• Let n = 3. Tabular all possible counter values (c) in the table.

n=0	n=1	n=2	n=3	probability
0	0	0	<mark>0</mark>	(1-p) ³ *p <mark>0</mark>
			1	(1-p) ² *p <mark>1</mark>
		1	1	(1-p) ² *p <mark>1</mark>
			2	(1-p)*p <mark>2</mark>
	1	1	1	(1-p) ² *p <mark>1</mark>
			<mark>2</mark>	(1-p)*p <mark>2</mark>
		2	2	(1-p)*p <mark>2</mark>
			<mark>3</mark>	p <mark>3</mark>

E[c] = ?

• Let n = 3. Tabular all possible counter values (c) in the table.

n=0	n=1	n=2	n=3	probability
0	0	0	<mark>0</mark>	(1-p) ³ *p <mark>0</mark>
			1	(1-p)²*p <mark>1</mark>
		1	1	(1-p) ² *p <mark>1</mark>
			<mark>2</mark>	(1-p)*p <mark>2</mark>
	1	1	1	(1-p) ² *p <mark>1</mark>
			2	(1-p)*p <mark>2</mark>
		2	2	(1-p)*p <mark>2</mark>
			<mark>3</mark>	p <mark>3</mark>

$$E[c] = \sum_{c=0}^{3} c \cdot \left(\binom{3}{c} (1-p)^{3-c} \cdot p^c \right)$$

 The formula is based on the observation that "probability" values follows the Binom(n=3, p)

c can be deemed as # of heads!

- Hence E[c] is the expected value of this Binom distribution, which is np = 3p.
- Hence, we verified: E[c]/p = n

• Let n = 3. Tabular all possible counter values (c) in the table.

- P(c | n=3): the probability of seeing a counter value of c after processing n=3 items.
- P(n | c=2): the probability of n when I "peeked" at the counter and see a value of c=2, and I want to know the (distribution of) n at that time.

• Let n = 3. Tabular all possible counter values (c) in the table.

n=0	n=1	n=2	n=3	probability	$P(n \mid c) = ?$
0	0	0	0	(1-p) ^{3*} p <mark>0</mark>	
			1	(1-p) ² *p <mark>1</mark>	
		1	1	(1-p) ² *p <mark>1</mark>	
			2	(1-p)*p <mark>2</mark>	
	1	1	1	(1-p) ² *p <mark>1</mark>	
			2	(1-p)*p <mark>2</mark>	
		2	2	(1-p)*p <mark>2</mark>	
			<mark>3</mark>	p <mark>3</mark>	

- P(c | n=3): the probability of seeing a counter value of c after processing n=3 items.
- P(n | c=2): the probability of n when I "peeked" at the counter and see a value of c=2, and I want to know the (distribution of) n at that time.

• Let n = 3. Tabular all possible counter values (c) in the table.

n=0	n=1	n=2	n=3	probability	$P(n \mid c) = ?$
0	0	0	0	(1-p) ^{3*} p <mark>0</mark>	
			1	(1-p) ² *p <mark>1</mark>	need P(n) !
		1	1	(1-p) ² *p <mark>1</mark>	→ Assume P(n) = 1/n ← also known as "uninformative prior"
			2	(1-p)*p <mark>2</mark>	
	1	1	1	(1-p) ² *p <mark>1</mark>	
			2	(1-p)*p <mark>2</mark>	
		2	2	(1-p)*p <mark>2</mark>	
			<mark>3</mark>	p <mark>3</mark>	

- P(c | n=3): the probability of seeing a counter value of c after processing n=3 items.
- P(n | c=2): the probability of n when I "peeked" at the counter and see a value of c=2, and I want to know the (distribution of) n at that time.

• Let n = 3. Tabular all possible counter values (c) in the table.

n=0	n=1	n=2	n=3	probability	$P(n \mid c) = ?$
0	0	0	<mark>0</mark>	(1-p) ³ *p <mark>0</mark>	
			1	(1-p) ² *p <mark>1</mark>	$P(c \mid n) = \binom{n}{p^c} p^c (1-p)^{n-c}$
		1	1	(1-p)²*p <mark>1</mark>	$\begin{bmatrix} c \\ 1 \end{bmatrix}^{r} \begin{bmatrix} c \\ 1 \end{bmatrix}^{r}$
			2	(1-p)*p <mark>2</mark>	$P(n) = \frac{1}{n}$
	1	1	1	(1-p)²*p <mark>1</mark>	$\binom{n}{c} p^c (1-p)^{n-c} \frac{1}{n}$
			2	(1-p)*p <mark>2</mark>	$P(n \mid c) = \frac{1}{\sum_{m=c}^{\infty} {\binom{m}{c}} p^{c} (1-p)^{m-c} \frac{1}{m}}$
		2	2	(1-p)*p <mark>2</mark>	$n \ge c$ $m = c (c)^{-1} (c)^{-1} (c)^{-1} m$
			<mark>3</mark>	p <mark>3</mark>	

• Note that the formula and computation for the full-fledged Morris' counting can be derived in the same way, but without a simplistic formula.

for
$$p = \frac{1}{2}$$
, $P(n \mid 2) = (n-1)\left(\frac{1}{2}\right)^n$, $n \ge 2$.

Final Note

• Let n = 3. Tabular all possible counter values (c) in the table.

n=0	n=1	n=2	n=3	probability
0	0	0	<mark>0</mark>	(1-p) ^{3*} p <mark>0</mark>
			1	(1-p) ² *p <mark>1</mark>
		1	1	(1-p) ² *p <mark>1</mark>
			2	(1-p)*p <mark>2</mark>
	1	1	1	(1-p) ² *p <mark>1</mark>
			<mark>2</mark>	(1-p)*p <mark>2</mark>
		2	2	(1-p)*p <mark>2</mark>
			<mark>3</mark>	p <mark>3</mark>

 $P(n \mid c) = ?$

- Note that the formula and computation for the full-fledged Morris' counting can be derived in the same way, but without a simple formula.
 - p is changing over n and over each path
- If we only consider the final probability P(c|n) in Morri's counting, it will be a "fixed" valid and sophisticated distribution
 - We did not explicitly specify (aka. parameterized) the distribution, but instead, we specify the <u>stochastic</u> <u>process</u> that results in this distribution.