Proof for Morris' Approximate Counting Algorithm

Wei Wang, HKUST(GZ)

2024-10-31

The Algorithm

- 1. Initialization: Set the counter c = 0.
- 2. Processing Each Event: For each new event, increment the counter cwith probability $\frac{1}{2^c}$. Otherwise, leave c unchanged.
- 3. Final Count: After processing n events, the counter is X_n .

Goal

Show that:

 $\mathbb{E}[2^{x_n}] = n + 1$

Proof by Induction

Let's define $E_n = \mathbb{E}[2^{x_n}].$

Note that $\mathbb{E}[2^{x_n}] = \sum_{c=0}^\infty 2^c \mathbb{P}[X_n = c]$

Comment:

- This is a critical step, though it is just the vanilla definition of expectation.
- X_n 's range is actually only [0, n], but we can *extend* the domain of it to include invalid values up to ∞ by justing assign 0 to them. Strictly speaking, we shall use a different random variable, say $Z_e n$, which has one-to-one correspondence with X_n .
- 1. Base Case:
- Before any events n = 0, c = 0.
 Thus, E₀ = E[2^{x₀}] = 2⁰ = 1
 Inductive Step:
- - Assume that after n-1 events, $E_{n-1} = n$.
 - Consider the *n*-th event:
 - With probability $\frac{1}{2^c}$: Increment the counter c by 1.

- With probability $1 - \frac{1}{2^c}$: Keep the counter *c* unchanged.

• The expected value after the n-th event is:

$$\mathbb{E}[2^{x_n} \mid X_{n-1} = c] = 2^{c+1} \cdot \frac{1}{2^c} + 2^c \cdot \left(1 - \frac{1}{2^c}\right) = 2 + 2^c - 1 = 2^c + 1$$

• Taking the expectation over all possible c after n-1 events:

$$\begin{split} E_n &= \mathbb{E}[2^{x_n}] = \sum_{c=0}^{\infty} \mathbb{E}[2^{x_n} \mid X_{n-1} = c] \cdot \mathbb{P}[X_{n-1} = c] \\ &= \sum_{c=0}^{\infty} (2^c + 1) \cdot \mathbb{P}[X_{n-1} = c] = \mathbb{E}[2^{X_{n-1}}] + 1 = E_{n-1} + 1 \end{split}$$

(Use the definition of $\mathbb{E}[2^{x_n}]$ reversely)

3. Solving the Recurrence:

• Starting from $E_0 = 1$:

$$E_1 = E_0 + 1 = 2, \quad E_2 = E_1 + 1 = 3, \quad \dots, \quad E_n = n + 1$$

Conclusion

By induction, we've established that:

$$\mathbb{E}[2^{x_n}] = n+1$$

Comment

It is actually more important to appreciate the significance of the recurrence relationship $E_n = E_{n-1} + 1$. This shows that the algorithm is also doing the counting, just probabilistically.

Deterministic Countin	g	Probabilistic Counting
n <- n + 1	 	$X_{n+1} <- X_{n} + 1$ probabilistically with the guarantee: $E_{n+1} = E_{n} + 1$

Or, you can think about the algorithm tracks $\log_2(n+1)$ probabilistically.

Further Readings

The original paper is [1], with an advanced analysis in [2]. See [3]'s "Algorithm" section for an *efficient bit-level* implementation of the algorithm. See [4] for the lower/upper bound results for the problem.

References

1. Robert Morris: Counting Large Numbers of Events in Small Registers. CACM 1978.

- 2. PHILIPPE FLAJOLET: APPROXIMATE COUNTING: A DETAILED ANALYSIS. BIT 1985.
- 3. Wikipedia: Approximate counting algorithm. https://en.wikipedia.org/wiki/Approximate_counting_alg
- 4. Jelani Nelson, Huacheng Yu: Optimal bounds for approximate counting. https://arxiv.org/abs/2010.02116