
DP for Optimal Subset Selection
Problem

(Abstract View)

Optimal Subset Selection Problem
• Let S be a set of n item: x1, x2, …, xn

• Consider any subset T from S, define
• Eligibility: valid?(T) = T/F
• Reward:

• R(T) →ℝ≥0
• Monotone:

• Problem: find valid T* with the minimum reward

• Since we only need the optimal solution, can
we partition the powerset of S into exhaustive
and disjoint partitions, and only keep the best
solution in each partition?
• A natural way is the prefix partitioning
• Sk := set of first k items of S

disjoint

exhaustive

Solution space

Recurrence

• Let Tk be the optimal subset in Sk, Tc
k be the optimal subset in

 Sk+1 \ Sk

• Can we grow Tk to Tk+1? ➔ Greedy
• Can we grow Tk or Tc

k to Tk+1 ➔ Dynamic Programming

Knapsack Problem

• Try 1:
• Grow Tk with xk+1

• Only choice: take xk+1 if the result is valid (i.e., not violating the weight constraint)
• Observe that this may not be Tk+1

• Tk cannot take xk+1 (weight limit)
• Tk

(2)
 can take xk+1, and result in better solution

• Pushing it further, all need to be considered!

Tk
(2) : 2nd-best solution in Sk

If we do not have a bound on R(xk+1), then R(𝜏)
can be as small as 0
➔ Any subset in Sk may be grown into Tk+1 !!!

Nevertheless, among subsets with the same
reward value, only need to “keep” one subset
➔ (solution space) Compression achieved !

Sk+1

R=a’1 R=a’2

R=a’3 R=a’4

Sk

R=a1 R=a2

Exercise: Draw and Trace these ‘compressed solution’
spaces for a simple (knapsack) problem.

opt[k, a1] opt[k, a2]

Exercise: Balanced Partition Problem

• (1) Do the similar reasoning on BP
• (2) Find a (smallest) example where Tk+1 is not grown from Tk

Exercise: Balanced Partition Problem

• (1) Do the similar reasoning on BP
• (2) Find a (smallest) example where Tk+1 is not grown from Tk

S = {2, 10, 8, 5}
T1 = {2}
T2 = {2}
T3 = {2,8}
T4 = {2,8} T4 = {2,10}

T3
(2) = {2, 10}

Knapsack Problem

• Try 2:
• What about

Knapsack Problem

• Try 2:
• What about
• Bug

• opt[W] and opt[W-w(x)] may both require using the same x
• But each x has only one supply!
• ➔ Must track available items

• Fix:
• Correct but useless

• Subproblems in U alone require enumerating ALL subsets
• ➔ Use the compression idea

Always valid as long as opt
solution contains at least one x

We consider U \ {x} because
we need to consider set of
solutions that contains x

Knapsack Problem

• Try 2:
• Partition all subsets into Sk, k in [n], based on the largest element it contains
• The recurrence becomes:

• Overlapping substructure emerges!

We consider U \ {x} because
we need to consider set of
solutions that contains x

Knapsack Problem

• Try 2:
• Partition all subsets into Sk, k in [n], based on the largest element it contains
• The recurrence becomes:

• Overlapping substructure emerges!

Opt solution uses xi+1Opt solution do not
uses xi+1

	Slide 1: DP for Optimal Subset Selection Problem (Abstract View)
	Slide 2: Optimal Subset Selection Problem
	Slide 3: Recurrence
	Slide 4: Knapsack Problem
	Slide 5: Exercise: Balanced Partition Problem
	Slide 6: Exercise: Balanced Partition Problem
	Slide 7: Knapsack Problem
	Slide 8: Knapsack Problem
	Slide 9: Knapsack Problem
	Slide 10: Knapsack Problem

