DP for Optimal Subset Selection
Problem
(Abstract View)

Optimal Subset Selection Problem

* Let S be a set of nitem: x4, X, ..., X, {lﬁi}
* Cansider any subset T from S,|define /, | “‘“w_«_x
« |Eligibility: valid?(T) = T/F {'I;rﬂ y ii (2,3}
* Reward: AN /‘4:\:5
* R(M > Ry | {3 {2
« Monotone: R(T'U{z,})= f(R(T),R(z;)), [is monotone H'““-x_ f__f..f"“
* Problem: find valid T* with the minimum reward -4
* Since we only need the optimal solution, can
we partition the powerset of S into exhaustive Ti1 0 Sk
and disjoint partitions, and only keep the best exhaustive
solution in each partition? *
* A naturalway is the prefix partitioning VT, T € Sg|VT €Ski1 \ Sk

¢ S5, :=setoffirstkitemsof S

|

Y
disjoint

Recurrence

* Let T, be the optimal subsetin S,, T°, be the optimal subsetin
St \ Sk

» Canwe grow T, to T,,,? =» Greedy

* Canwe grow T, or T°, to T, =» Dynamic Programming

Exercise: Draw and Trace these ‘compressed solution’

spaces for a simple (knapsack) problem.

Knapsack Problem

* Try 1:
* Grow T, with x4
* Only choice: take x,,, if the resultis valid (i.e., not violating the weight constraint)
* Observe that this may notbe T,,,

* T, cannot take x,,, (weight limit)
. . 2. 2nd- ok
* T, can take X, and result in better solution [ARSI

* Pushingitfurther,all {7 | 7 € Sg, R(7) > R(T%) —‘R(a;kﬂ)\} need to be considered!

If we do not have a bound on R(x,.), then R(7)

Sic can beas smallas0

=>» Any subset in S, may be grown into T, !!!

Nevertheless, among subsets with the same

reward value, only need to “keep” one subset

5 =>» (solution space) Compression achieved !

{3
‘oBt|I:i ai| \ ‘ oet|ki aa| \

Exercise: Balanced Partition Problem

* (1) Do the similar reasoning on BP
* (2) Find a (smallest) example where T,,, is not grown from T,

Exercise: Balanced Partition Problem

* (1) Do the similar reasoning on BP
* (2) Find a (smallest) example where T,,, is not grown from T,
S={2,10, 8, 5}
={2}
T, _{2}
={2,8} T,@={2, 10}
x T4 {2,8} (T4={2,1O}

Knapsack Problem

* Try 2:

« What about opt|W| = glelgl {opt|W — w(x)] + R(x)}

Knapsack Problem

* Try 2:
. Al lid as |
- Whatabout opW) = nig (opV — w(e)) + R}
* Bug

* opt[W] and opt[W-w(x)] may both require using the same x
* But each x has only one supply!
« =» Must track available items
* Fix: opt|U, W] = mi}}l {opt{U\{x}, W —w(x)] + R(x)}
* Correct but useless v

* Subproblemsin U alone require enumerating ALL subsets
« = Use the compression idea We consider U\ {x} because

we need to consider set of
solutions that contains x

We consider U\ {x} because

KnapsaCk PrOblem we need to consider set of

solutions that contains x

e Try 2: optlU,W]= gg{r} {optlU\ {z}, W —w(z)] + R(zx)}

* Partition all subsets into S,, kin [n], based on the largest element it contains

* The recurrence becomes: opt|U, W | = m[m] {opt|S;, W|}
1en

* Overlapping substructure emerges!

Knapsack Problem

e Try 2: optlU, W] = }”Brél(r]l {optlU \ {z}, W —w(x)] + R(x)}

* Partition all subsets into S, kin [n], based on the largest element it contains
* The recurrence becomes: opt|U, W | = m[m] {opt|S;, W|}
1€|n
* Overlapping substructure emerges!
opt[Siy1, W] = min (opt[S;, W], opt[Ss, W — w(ws11)] + R(i41))

Opt solution do not Opt solution uses X;,
USEeS X;,1

	Slide 1: DP for Optimal Subset Selection Problem (Abstract View)
	Slide 2: Optimal Subset Selection Problem
	Slide 3: Recurrence
	Slide 4: Knapsack Problem
	Slide 5: Exercise: Balanced Partition Problem
	Slide 6: Exercise: Balanced Partition Problem
	Slide 7: Knapsack Problem
	Slide 8: Knapsack Problem
	Slide 9: Knapsack Problem
	Slide 10: Knapsack Problem

