
DSAA 2043 | Design and Analysis of Algorithms

Design and Analysis of Algorithms

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

➢Introduction

➢Max in an Array and Insertion sort

➢Loop Invariant

➢Basic Data Structure

Design and Analysis of Algorithms, Spring 2025

• Lecture Time: Tue + Thu, 1030 – 1150, W1-222

• Lab Session: Fri, 1030 – 1150, E1-228

• Instructor: Wei Wang
– weiwcs AT ust.hk

– http://wei-wang.net/

• TA
– Liuchang Jing, ljing248 AT connect.hkust-gz.edu.cn

• Course materials
– Web page: https://dbwangwei.github.io/DSAA2043/

– Or Canvas

2

http://wei-wang.net/
https://dbwangwei.github.io/DSAA2043/

Jing Tang 3

Introduction

Course Goals

• The design and analysis of algorithms
– They usually appear together

• By taking this course, you will
– Obtain a good understanding of various data structures and algorithms

– Learn to think analytically about algorithms

– Learn to design and apply algorithms to solve computational problems
effectively

– Learn to implement and evaluate algorithms and data structures

4

Contents (Tentative)

5

Textbook and Materials

Textbook:

• Introduction to Algorithms. Cormen, Leiserson, Rivest, and Stein

Reference books:

• Algorithm Design. Kleinberg and Tardos

• The Algorithm Design Manual. Steven Skiena

Online resources:

• MIT 6.006 - Introduction to Algorithms

• Stanford CS161 - Design and Analysis of Algorithms

6

https://mitpress.mit.edu/9780262533058/introduction-to-algorithms/
https://www.pearson.com/en-us/subject-catalog/p/Kleinberg-Algorithm-Design/P200000003259?view=educator
https://www.algorist.com/
https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-spring-2020/
https://stanford-cs161.github.io/winter2024/

Assessment and Grading (Tentative)
• Class Participation (5%)

• Lab Exercises (10%):
work on lab exercises and submit by the deadline (each week)

• Individual Project (20%):
 a two-phase programming exercise

• Mid-term exam (25%):
closed book, on computer, week 8

• Final exam (40%):
closed book, written

• We assess student performance using criterion-referencing approach.
In addition to the criterion written in course syllabus, you can estimate
your performance from your course work score:
– A level: [85, 100]

– B level: [70, 85)

– C level: [55, 70] 7

– D level: [40, 55)

– F level: [0, 40)

How to get the most out of this course
Preview, Participate, and Review matters!

• Before class:

– Prepare for the lecture

• During class:

– Class participation: ask any questions anytime

– Engage with in-class questions and exercises

• After class:

– Review contents timely and ask questions☺ → Don’t wait until the day before exam

– Do exercises

• Generative AI:

– Using Generative AI to prepare and review course content is allowed.

– Don’t use it (brainlessly) to solve exercise.

• Learning requires generation by you (not AI)

• Learning algorithm do require learning abstraction, in-depth thinking, and asking critical questions! 8

What Is an Algorithm

“An algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set
of values, as output in a finite amount of time. An algorithm is thus a
sequence of computational steps that transform the input into the
output.”

- CLRS

• Are they algorithms?
– Problem: Do any two students in a class have the same birthday?

Solution: Compare each student with others

– Problem: Do any two people in the world share the same birthday?
Solution: keep asking random people about their birthdays, until you find a
pair that matches

9

→ Any better ideas?

Jing Tang 10

Max in an Array and Insertion sort

algorithm examples

Pseudo-Code

• Pseudo-code: A mixture of natural language and high-level
programming concepts that describes the main ideas behind a
generic implementation of a data structure or algorithm.

• It is more structured than usual prose but less formal than a
programming language

• Expressions
– use standard mathematical symbols to describe numeric and boolean

expressions

– use ← for assignment (“=” in Python)

– use = for equality relationship (“==” in Python)

• Method declarations
– algorithm name(param1,param2)

11

Pseudo-Code

• Programming constructs

• decision structures: if ... then ... [else ...]

• while-loops: while ... do

• repeat-loops: repeat ... until ...

• for-loop: for ... do

• array indexing: A[i], A[i:j], A[i,j] or A[i][j]

• Methods

• calls: object method(args)

• returns: return value

12

array index starts from 1

Subarray includes A[j]

2d array

Max in an Array

Algorithm findMax(A)

Input: An array A storing n values

Output: The maximum element in A

13

findMax pseudo-code

Algorithm FindMax(A)
Input: An array A with n elements
Output: The maximum value in A

1. max_so_far ← A[1] // Initialize max with the first element
2. for i ← 2 to length(A) - 1 do
3. if A[i] > max_so_far then
4. max_so_far ← A[i] // Update max if a larger value is found
5. end if
6. end for
7. return max_so_far

14

Sorting an Array

Algorithm sort(A)

Input: An array A storing n values

Output: A permutation of A where elements are ordered in
increasing sequence

15

Sort

16

INPUT
sequence of numbers

OUTPUT
a permutation of the
sequence of numbers

a1, a2, …., an

2 5 4 10 7

b1, b2, …., bn

 2 4 5 7 10

Correctness (requirements for the output)
For any given input the algorithm halts
with the output:

• b1 < b2 < b3 < …. < bn

• b1, b2, b3, …., bn is a permutation of
a1, a2, a3, …., an

Running time
Depends on

• number of elements (n)
•how (partially) sorted

they are
•algorithm

Picking and Placing Cards at Hand

17

Strategy
• Start “empty handed”
•Insert a card in the right

position of the already
sorted hand

• Continue until all cards are
inserted/sorted

Insertion Sort

18

Algorithm InsertionSort(A)
Input: An array A with n elements
Output: A sorted in non-decreasing order

1. for i ← 2 to length(A) do
2. key ← A[i] // Current element to be inserted
3. j ← i - 1 // Start comparing from the previous element
4. while j > 0 and A[j] > key do
5. A[j + 1] ← A[j] // Shift element to the right
6. j ← j - 1
7. end while
8. A[j + 1] ← key // Place key in the correct position
9. end for

10. return A // Sorted array

Jing Tang 19

Loop Invariant

Is our algo. correct?

Proving the Correctness of FindMax

20

Algorithm FindMax(A)
Input: An array A with n elements

Output: The maximum value in A

1. max_so_far ← A[1]

2. for i ← 2 to length(A) - 1 do

3. if A[i] > max_so_far then
4. max_so_far ← A[i]

5. end if

6. end for
7. return max_so_far

Proof of Correctness
Goal: Showing that max_so_far stores the
maximum value of A.
1. Before the Loop Starts (Initialization)
•Before entering the loop, max_so_far = A[1].
Since we’ve only seen one element, this is correct.
2. During Each Iteration (Maintenance)
•If A[i] > max_so_far, we update max_so_far =
A[i], ensuring it holds the maximum seen so far.
•Otherwise, max_so_far remains unchanged,
which is still correct.
3. After the Loop Ends (Termination)
•At the end, max_so_far contains the maximum
of all A[1] to A[n].

Loop Invariant

• A loop invariant is a property or condition that holds true before and
after each iteration of a loop.

• Purpose:
– To show that an algorithm maintains a specific condition throughout its

execution.

– To help prove that the algorithm works correctly (via initialization,
maintenance, and termination).

• The way that we prove FindMax correct is Loop Invariant.
– Loop invariant: max_so_far holds the maximum value among A[1:i].

21

Structure of a Loop Invariant Proof

• Initialization: Show that the invariant holds before the first iteration
(base case).

• Maintenance: Assuming the invariant holds at the beginning of any
iteration, prove that it still holds after executing the loop body.

• Termination: When the loop terminates, the invariant (plus the loop’s
exit condition) gives a useful property that helps prove the
algorithm’s correctness.

FYI. The three steps is introduced in CLRS. In other books, you may find Establishment (i.e. Initialization),
Preservation (i.e. Maintenance), Postcondition and Termination: Postcondition ensures the final goal is achieved
if the loop stops; Termination guarantees that the loop will stop.

22

Proving Insertion-sort

23

Algorithm InsertionSort(A)
Input: An array A with n elements
Output: A sorted in non-decreasing

 order

1. for i ← 2 to length(A) do
2. key ← A[i]
3. j ← i - 1
4. while j > 0 and A[j] > key do
5. A[j + 1] ← A[j]
6. j ← j - 1
7. end while
8. A[j + 1] ← key
9. end for

10. return A

Proof of Correctness

Loop Invariant: A[1:i-1] is a sorted list of elements in
the original A[1:i-1]
1. Initialization (Note: i ← 2 is not part of the loop)
• When i=2, A[1:1] contains one value → sorted.
2. Maintenance
• Within the loop-body, A[1:i-1] is assumed to be
sorted. We move A[i-1], A[i-2], … toward the right,
until we find a position for A[i]. Once A[i] is inserted,
A[1:i] remains sorted.
3. Termination
• As i goes from 2 to length(A), and the loop body
does not modify i. The loop will terminate. By
termination, i=length(A) means A[1:length(A)] is
sorted.

Discussion: a Loop Invariant for Linear Search

24

Algorithm LinearSearch(A, x)
Input: An array A with n elements, target value x
Output: Index of x in A, or -1 if not found

1. loc = -1
2. for i ← 1 to length(A) do
3. if A[i] == x then
4. loc = i // Found x at index i
5. end if
6. end for
7. return val

Proof of Correctness

Loop Invariant: What is true
and related to this task?
1. Initialization: What is true
about A[1:i] before the loop
starts?
2. Maintenance: How does
each iteration preserve the
correctness of the search?
3. Termination: When the loop
exits, why can we be sure the
correct index or -1 is returned?

Using the Loop Invariant Proof Structure, prove that LinearSearch(A, x) is correct.

Discussion: a Loop Invariant for Linear Search

25

Algorithm LinearSearch(A, x)
Input: An array A with n elements, target value x
Output: Index of x in A, or -1 if not found

10. loc = -1
20. for i ← 1 to length(A) do
30. if A[i] == x then
40. loc = i // Found x at index i
50. end if
60. end for
70. return loc

Using the Loop Invariant Proof Structure, prove that LinearSearch(A, x) is correct.

Proof of Correctness

Loop Invariant:

1. Initialization:

2. Maintenance:

3. Termination:

Discussion: a Loop Invariant for Linear Search

26

Algorithm LinearSearch2(A, x)
Input: An array A with n elements, target value x
Output: Index of x in A, or -1 if not found

1. for i ← 1 to length(A) do
2. if A[i] == x then
3. return i // Found x at index i
4. end if
5. end for
6. return -1 // x is not in A

Proof of Correctness

Loop Invariant:

1. Initialization:

2. Maintenance:

3. Termination:

Using the Loop Invariant Proof Structure, prove that LinearSearch2(A, x) is correct.

Jing Tang 27

Basic Data Structures

What Is a Data Structure

“A data structure is a way to store and organize data in order to
facilitate access and modifications. Using the appropriate data
structure or structures is an important part of algorithm design. No
single data structure works well for all purposes, and so you should
know the strengths and limitations of several of them.”

- CLRS

28

Basic Data Structures

• Arrays

• Lists

• Stacks

• Queues

• Trees

29

F R

1
2

3 4

5 6

7 8

head

Array

• An array is a linear data structure that stores a fixed-size collection of
elements of the same type in contiguous memory locations.

– Fixed Size – Its size is declared at initialization and cannot be changed.

– Contiguous Memory Allocation – Elements are stored sequentially in memory,
making access fast (O(1) for direct access by index).

– Homogeneous – All elements in an array must be of the same data type.

– Index-Based Access – Elements are accessed using an index, starting from 1.

30

1 2 3 4 5

Array-based Matrix

31

• We can use an array or arrays to store a matrix.

Row-major ordering Column-major ordering

Blue: Array of pointers to arrays

Row-major ordering Column-major ordering

M[1] = [1, 2, 3]
M[1][2] = 2
M[1, 2] = 2

Python’s 2d array (list of list)

Numpy’s 2d array

Stack

• def. A list for which Insert (push) and Delete (pop) are allowed only at

one end of the list (the top) → LIFO – Last in, First out

• Objects: A finite sequence of nodes
• Operations:

– Push: Insert element at top
– Pop: Remove and return top element

• Applications: undo operations

32

Push
Pop Pop

Exercise: Stack

• Describe the output of the following series of stack operations

– Push(8)

– Push(3)

– Pop()

– Push(2)
– Push(5)

– Pop()

– Pop()

– Push(9)

– Push(1)

33

Array-based Stack

34
PUSH(S,17), PUSH(S,3) POP(S)

INITIALIZE(S, size)
1 S.size = size
2 S.array = new array of size S.size
3 S.top = 0 # Stack starts empty

STACK-EMPTY(S)
1 if S.top == 0
2 return TRUE
3 else return FALSE

PUSH(S, x)
1 if S.top == S.size
2 error "overflow"
3 else S.top = S.top + 1
4 S[S.top] = x

POP(S)
1 if STACK-EMPTY(S)
2 error "underflow"
3 else S.top = S.top - 1

5 return S[S.top+1]

Growable Array-Based Stack

35

INITIALIZE(S, size)
1 S.size = size
2 S.array = new array of size S.size
3 S.top = 0 # Stack starts empty

STACK-EMPTY(S)
1 if S.top == 0
2 return TRUE
3 else return FALSE

GROW(S)
1 new_size = 2 * S.size # Double the size
2 new_array = new array of size new_size
3 for i = 1 to S.size:
4 new_array[i] = S.array[i] # Copy elements
5 S.array = new_array
6 S.size = new_size

PUSH(S, x)
1 if S.top == S.size:
2 GROW(S) # Expand the array
3 S.top = S.top + 1
4 S.array[S.top] = x

POP(S)
1 if STACK-EMPTY(S)
2 error "underflow"
3 else S.top = S.top - 1

5 return S[S.top+1]

Singly Linked List

• A singly linked list is a dynamic data structure consisting of a
sequence of nodes

• Each node contains two parts:
– Data – Stores the actual value.

– Next Pointer – Points to the next node in the list.

– The last node’s next pointer is NULL, indicating the end of the list.

36

next

value

node

A B C D

Stack with a Singly Linked List

• We can implement a stack with a singly linked list
• The top element is stored at the first node of the list

• The space used is O(n) and each operation of the Stack takes O(1)
time

37

elements

top

Stack Summary

38

Implementation Push Pop isEmpty Top Space

Fixed-size Array O(1) O(1) O(1) O(1) O(n) (Extra capacity overhead)

Growable Array O(1) amortized/O(n) worst O(1) O(1) O(1) O(n) (Extra capacity overhead)

Linked List O(1) O(1) O(1) O(1) O(n) (Extra pointer overhead)

• Fixed-Size Array: Best for known, small-sized stacks but has wasted
memory when underutilized.

• Growable Array: Balances flexibility and speed, but resizing incurs
occasional O(n) cost.

• Linked List: No need to predefine size, but higher space overhead
(extra pointers for each node).

Queues

• def.: A Queue is a linear data structure that follows the FIFO (First In,
First Out) principle. This means that elements are added at the rear
(enqueue) and removed from the front (dequeue).

• Operations:
– Enqueue(x) → Adds x to the rear.

– Dequeue() → Removes and returns the front element.

• Applications: printer’s jobs

39

Exercise: Queues

• Describe the output of the following series of queue operations

– enqueue(8)

– enqueue(3)

– dequeue()

– enqueue(2)
– enqueue(5)

– dequeue()

– dequeue()

– enqueue(9)

– enqueue(1)

40

Circular Array based Queue

41

INITIALIZE(Q, size)
1 Q.size = size
2 Q.array = new array of size Q.size
3 Q.head = -1 # Indicates an empty queue
4 Q.tail = -1

IS-EMPTY(Q)
1 return Q.head == -1

IS-FULL(Q)
1 return (Q.tail + 1) % Q.size == Q.head

ENQUEUE(Q, x)
1 if IS-FULL(Q):
2 error "Queue is full"
3 else if IS-EMPTY(Q):
4 Q.head = Q.tail = 0 # First element in queue
5 else:
6 Q.tail = (Q.tail + 1) % Q.size # wrap around
7 Q.array[Q.tail] = x

Reuse free cells when enqueue

Circular Array based Queue (cont.)

42

Reuse free cells when enqueue

DEQUEUE(Q)
1 if IS-EMPTY(Q):
2 error "Queue is empty"
3 else:
4 temp = Q.array[Q.head] #Store the head element
5 if Q.head == Q.tail: #Only 1 element was present
6 Q.head = Q.tail = -1 # Reset queue
7 else:
8 Q.head = (Q.head + 1) % Q.size #wrap around
9 return temp

FRONT(Q)
1 if IS-EMPTY(Q):
2 error "Queue is empty"

3 return Q.array[Q.head]

Growable Array-based Queue

• In an enqueue operation, when the array is full, instead of throwing
an exception, we can replace the array with doubled sized

• Similar to what we did for an array-based stack

• The enqueue operation has amortized running time O(1)

43

Queue with a Singly Linked List

• We can implement a queue with a singly linked list
– The front element is stored at the head of the list
– The rear element is stored at the tail of the list

• The space used is O(n) and each operation of the Queue takes O(1)
time

• the queue is NEVER full

44

tail

elements

head

Queues Summary

45

Implementation Enqueue Dequeue isEmpty Head Space

Circular Array O(1) O(1) O(1) O(1) O(n) (Fixed size, extra capacity overhead)

Growable Array O(1) amortized/O(n) worst O(1) O(1) O(1) O(n) (Extra capacity overhead)

Linked List O(1) O(1) O(1) O(1) O(n) (Extra pointer overhead)

• Circular Array: Best for known, small-sized queues but has wasted
memory when underutilized.

• Growable Array: Balances flexibility and speed, but resizing incurs
occasional O(n) cost.

• Linked List: No need to predefine size, but higher space overhead
(extra pointers for each node).

Deque: double-ended queue

• Def. A Deque (Pronounced ‘deck’) is a linear data structure that allows
insertion and deletion from both ends (front and rear).

• Supports both FIFO and LIFO operations.
– Insert and delete from both front and rear.

• More flexible than a normal queue.
– Efficient O(1) insertion & deletion at both ends

46

Doubly Linked List

47

• A doubly linked list provides a natural
implementation of the Deque

• Nodes implement Position and store:

– element

– link to the previous node

– link to the next node

• Special trailer and header nodes

prev next

elem

trailernodes/positions

node

elements

Deque with a Doubly Linked List

48

• We can implement a deque with a doubly linked list
– The front element is stored at the first node

– The rear element is stored at the last node

• The space used is O(n) and each operation of the
Deque ADT takes O(1) time

last

elements

first

Here’s a visualization of
the code for
removeLast().

Implementing Deques with Doubly Linked Lists

49

18

Abstract Data Type (ADT)

• ADT: A mathematical definition of objects, with operations defined on
them → an ADT specifies what a data structure should do, but not how it
does it.

• Key Characteristics of ADTs:
– Encapsulation: ADTs hide internal representations, exposing necessary operations.

– Implementation Independent: ADTs can be implemented using different underlying
structures.

– Operations-Oriented: ADTs define operations, not implementations.

• ADT Example - List:
– collection of elements.

– Common operations: insert(index, value), delete(index), get(index), size().

– Implementation: Arrays, Linked Lists.

50

Implementing Stacks and Queues with Deque

51

Stacks ADT with Deques:

Queues ADT with Deques:

	Slide 1: Design and Analysis of Algorithms
	Slide 2: Design and Analysis of Algorithms, Spring 2025
	Slide 3: Introduction
	Slide 4: Course Goals
	Slide 5: Contents (Tentative)
	Slide 6: Textbook and Materials
	Slide 7: Assessment and Grading (Tentative)
	Slide 8: How to get the most out of this course
	Slide 9: What Is an Algorithm
	Slide 10: Max in an Array and Insertion sort
	Slide 11: Pseudo-Code
	Slide 12: Pseudo-Code
	Slide 13: Max in an Array
	Slide 14: findMax pseudo-code
	Slide 15: Sorting an Array
	Slide 16: Sort
	Slide 17: Picking and Placing Cards at Hand
	Slide 18: Insertion Sort
	Slide 19: Loop Invariant
	Slide 20: Proving the Correctness of FindMax
	Slide 21: Loop Invariant
	Slide 22: Structure of a Loop Invariant Proof
	Slide 23: Proving Insertion-sort
	Slide 24: Discussion: a Loop Invariant for Linear Search
	Slide 25: Discussion: a Loop Invariant for Linear Search
	Slide 26: Discussion: a Loop Invariant for Linear Search
	Slide 27: Basic Data Structures
	Slide 28: What Is a Data Structure
	Slide 29: Basic Data Structures
	Slide 30: Array
	Slide 31: Array-based Matrix
	Slide 32: Stack
	Slide 33: Exercise: Stack
	Slide 34: Array-based Stack
	Slide 35: Growable Array-Based Stack
	Slide 36: Singly Linked List
	Slide 37: Stack with a Singly Linked List
	Slide 38: Stack Summary
	Slide 39: Queues
	Slide 40: Exercise: Queues
	Slide 41: Circular Array based Queue
	Slide 42: Circular Array based Queue (cont.)
	Slide 43: Growable Array-based Queue
	Slide 44: Queue with a Singly Linked List
	Slide 45: Queues Summary
	Slide 46: Deque: double-ended queue
	Slide 47: Doubly Linked List
	Slide 48: Deque with a Doubly Linked List
	Slide 49: Implementing Deques with Doubly Linked Lists
	Slide 50: Abstract Data Type (ADT)
	Slide 51: Implementing Stacks and Queues with Deque

