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➢Motivations
– primitive operations

– Best/Worst/Average Case

➢Asymptotic Analysis
– The Big O notation

– Big Omega and Big Theta

– Rules

➢Analyzing insertion sort
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Motivations
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Algorithmic Problem​
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Specification 
of input

?

Specification
of output as

a function of
input

• Infinite number of input instances satisfying the 

specification.

• E.g., a sorted, non-decreasing sequence of natural numbers

of non-zero, finite length:

• 1, 20, 908, 909, 100000, 1000000000

• 3



Algorithmic Solution
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• Algorithm describes actions on the input instance

• Many correct algorithms for the same algorithmic problem

Input instance, 
adhering to the 
specification

Algorithm Output 
related to the 
input as 
required



What is a Good Algorithm?

• Efficient
– Running time

– Space used

• Efficiency as a function of input size
– The number of bits in an input number

– Number of data elements (numbers, points)
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What is Analysis of Algorithms 

Estimate the running time.

Estimate the memory space required. 

Time and space depend on the input size.
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Measuring the Running Time Experimentally

How should we measure the 
running time of an algorithm?

Experimental Study

• Write a program that implements the algorithm

• Run the program with data sets of varying size and composition

• Use a system call to get an accurate measure of the actual running
time
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Limitations of Experimental Studies

• Must implement and test the algorithm to determine its running time

• Experiments done only on a limited set of inputs
– May not be indicative of the running time on other inputs not included in the 

experiment

• To compare two algorithms, the same hardware and software 
environments needed
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Beyond Experimental Studies

• We will develop a general methodology for analyzing running time of 
algorithms. This approach

– Uses a high-level description (pseudocode) of the algorithm instead of testing 
one of its implementations

– Considers all possible inputs

– Evaluates the efficiency of any algorithm being independent of the hardware 
and software environment

• To achieve that, we need to
– Make simplifying assumptions about the running time of each basic (primitive) 

operations

– Study how the number of primitive operations depends on the size of the 
problem solved
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Primitive Operations

Simple computer operation that can be performed in time that is always 
the same, independent of the size of the bigger problem solved (we say: 
constant time)

Note: Multiplying two Large Integers is not a primitive operation, because 
the running time depends on the size of the numbers multiplied. 
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More assumptions

• Counting each type of primitive operations is tedious

• The running time of each operation is roughly comparable:

• We are only interested in the number of primitive operations 
performed
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Estimating Running Time for FindMin
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Estimating Running Time for FindMin

• Running time depends on n = stop – start + 1

• T(n) = 8 + 10 * (n-1) primitive operations
– 8 primitive operations outside the loop

– 10 primitive operations inside the loop

• How will the running time change for the following two input instances?

0 1 2 3 4 5

5 4 3 2 1 0
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Insertion Sort (Recap.)

Algorithm InsertionSort(A)
Input: An array A with n elements
Output: A sorted in non-decreasing order

1. for i ← 2 to length(A) do
2.     key ← A[i]  // Current element to be inserted
3.     j ← i - 1   // Start comparing from the previous element
4.     while j > 0 and A[j] > key do
5.         A[j + 1] ← A[j]  // Shift element to the right
6.         j ← j - 1
7.     end while
8.     A[j + 1] ← key  // Place key in the correct position
9. end for

10. return A  // Sorted array
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Insertion Sort

Total time T 𝑛 = 𝑛 𝑐1 + 𝑐2 + 𝑐4 + 𝑐8 − 𝑐6 − 𝑐7 + σi=2
𝑛 𝑡i 𝑐5 + 𝑐6 + 𝑐7

−(𝑐2 + 𝑐4 + c6 − 𝑐7 − 𝑐8)
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Best/Worst/Average Case

• Best case:
– elements are already sorted; Each element only does one comparison (ti=1), 

running time = f(n), i.e., linear time

• Worst case:
– elements are sorted in reverse order; each element shifts i-1 times (ti=i-1), 

running time = f(n2), i.e., quadratic time

• Average case:
– Each element moves above half of its maximum shifts (ti=(i-1)/2), 

running time = f(n2), i.e., quadratic time

Total time T 𝑛 = 𝑛 𝑐1 + 𝑐2 + 𝑐4 + 𝑐8 − 𝑐6 − 𝑐7 + σi=2
𝑛 𝑡i 𝑐5 + 𝑐6 + 𝑐7

−(𝑐2 + 𝑐4 + c6 − 𝑐7 − 𝑐8)
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Best/Worst/Average Case

• For a specific size of input n, investigate running times for different 
input instances:

17



Best/Worst/Average Case

• For inputs of all sizes:
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Best/Worst/Average Case

• Worst case is usually used 
– It is an upper-bound and in certain application domains (e.g., air traffic 

control, surgery) knowing the worst-case time complexity is of crucial 
importance

– For some algorithms worst case occurs fairly often

– Average case is often as bad as worst case

• Finding average case can be very difficult

• The best (fastest) case is seldom of interest
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Asymptotic Analysis
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Asymptotic Analysis

• Goal: to simplify analysis of running time by getting rid of “details”, 
which may be affected by specific implementation and hardware

– like “rounding”: 1,000,001 ≈ 1,000,000

– 3n2 ≈ n2

• Capturing the essence: how the running time of an algorithm 
increases with the size of the input in the limit

– Asymptotically more efficient algorithms are best for all but small inputs
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Asymptotic Notation

• The “Big-Oh” O-Notation
• asymptotic upper bound

• f(n) is O(g(n)), if there exists constants c and n0,
s.t. f(n) ≤ c⋅g(n) for all n ≥ n0

→ 𝑡(𝑛) is asymptotically bounded above by 𝑔(𝑛)

• f(n) and g(n) are functions over non-negative integers

– We usually assume both f(n) 

and g(n) are non-negative too

• Used for worst-case analysis
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f (n )
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Example

For functions f(n) and g(n) there are positive 
constants c and n0 such that: f(n) ≤ c g(n) for n ≥ n0

f(n) = 2n + 6

conclusion: 

2n+6 is O(n)
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Another Example

On the other hand …
n2 is not O(n) because there
is no c and n0 such that:

n2 ≤ cn for n ≥ n0

The figure to the right 
illustrates that no matter how 
large a c is chosen there is an 
n big enough that n2 > cn
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Asymptotic Notation

• Simple Rule: Drop lower order terms and constant factors

• 50 n log n is O(  )

• 7n - 3 is O(  )

• 8n2 log n + 5n2 + n is O(  )
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Asymptotic Analysis of Running Time

• Use O-notation to express number of primitive operations executed 
as function of input size

• Comparing asymptotic running times
– an algorithm that runs in O(n) time is better than one that runs in O(n2) time

– similarly, O(log n) is better than O(n)

– hierarchy of functions: log n < n < n2 < n3 < 2n

• Caution! Beware of very large constant factors. An algorithm running 
in time 1,000,000 n is still O(n) but might be less efficient than one 
running in time 2n2, which is O(n2)
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Example of Asymptotic Analysis

Algorithm prefixAverages1(X)

Input: An n-element array X of numbers

Output: An n-element array A of numbers such that A[i] is the average
of elements X[1], ..., X[i]

for i ← 1 to n do

a ← 0

for j ← 1 to i do

a ← a+X[j] 

A[i] ← a/i

return array A

Analysis: running time is O(n2)

1 step

i iterations with 
i=1,2,...,n

n iterations
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A Better Algorithm

Algorithm prefixAverages2(X)

Input: An n-element array X of numbers

Output: An n-element array A of numbers such that A[i] is the 

average of elements X[1], ... , X[i]

s ← 0

for i ← 1 to n do

s ← s + X[i]

A[i] ← s/i

return array A

Analysis: Running time is …
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Asymptotic Notation (Terminology)

• Special classes of algorithms:

• Logarithmic: O(log n)

• Linear: O(n)

• Quadratic: O(n2)

• Polynomial: O(nk), k ≥ 1

• Exponential: O(an), a > 1

• “Relatives” of the Big-Oh
• Ω (f(n)): Big Omega-asymptotic lower bound

• Θ (f(n)): Big Theta-asymptotic tight bound
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What does O(1) mean?

We say 𝑡(𝑛) is 𝑂(1), if there exist two positive constants 𝑛0

and 𝑐 such that, for all 𝑛 ≥ 𝑛0.

𝑡 𝑛 ≤ 𝑐

So, it means that 𝑡(𝑛) is bounded.
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Asymptotic Notation

• The “Big-Omega” Ω−Notation
• asymptotic lower bound
• f(n) is Ω(g(n)) if there exists constants c and 

n0, s.t. c g(n) ≤ f(n) for n ≥ n0

• Used to describe best-case running 
times or lower bounds for algorithmic 
problems
• E.g., lower-bound for searching in an 

unsorted array is Ω(n)
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Asymptotic Notation

• The “Big-Theta” Θ−Notation

• asymptotically tight bound

• f(n) is Θ(g(n)) if there exists constants c1, c2,
and n0, s.t. c1 g(n) ≤ f(n) ≤ c2 g(n) for n ≥ n0

• f(n) is Θ(g(n)) if and only if f(n) is Ο(g(n))
   and f(n) is Ω(g(n))

• O(f(n)) is often misused instead of
Θ(f(n))
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Asymptotic Notation

Two more asymptotic notations

• "Little-oh" notation f(n) is o(g(n))
  non-tight analogue of Big-Oh

• For every c > 0, there should exist n0 , s.t.
  f(n) ≤ c g(n) for n ≥ n0

• Used for comparisons of running times

• If f(n) is o(g(n)), it is said that g(n) dominates f(n)

• "Little-omega" notation f(n) is ω(g(n))
  non-tight analogue of Big-Omega
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Asymptotic Notation

• Analogy with real numbers

• f(n) is O(g(n)) ≅ f ≤ g

• f(n) is Ω(g(n)) ≅ f ≥ g

• f(n) is Θ(g(n)) ≅ f = g

• f(n) is o(g(n)) ≅ f < g

• f(n) is ω(g(n)) ≅ f > g

• Abuse of notation: f(n) = O(g(n)) actually means f(n) ∈O(g(n))

The big O (resp. big Ω) denotes a tight upper (resp. lower) bounds, while 
the little o (resp. little 𝜔) denotes a loose upper (resp. lower) bounds.
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Practical meaning of big O…

If the unit is in seconds, this would make ~1011 years…
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Constant Factor Rule
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Sum Rule
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Product Rule
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Transitivity Rule
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Analyzing insertion sort
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O(n²) sorting algorithm: Insertion Sort

T 𝑛 = 𝑛 𝑐1 + 𝑐2 + 𝑐4 + 𝑐8 − 𝑐6 − 𝑐7 + 𝑛 − 1 𝑐5

−(𝑐2 + 𝑐4 + c6 − 𝑐7 − 𝑐8)=O(n)

Best case: A is sorted, while loop does not execute.
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O(n²) sorting algorithm: Insertion Sort

Worse case: A is reverse-ordered. The while loop execute i-1 times for each i

T 𝑛 = 𝑛 𝑐1+ 𝑐2+ 𝑐4+ 𝑐8− 𝑐6− 𝑐7 +෍
i=2

𝑛

(𝑖 − 1) 𝑐5 + 𝑐6 + 𝑐7 −(𝑐2+ 𝑐4 + c6 − 𝑐7− 𝑐8)

= 𝑛 𝑐1+ 𝑐2+ 𝑐4+ 𝑐8− 𝑐6− 𝑐7 +෍
i=2

𝑛

𝑖 − 1 𝑐5 + 𝑐6 + 𝑐7 = 𝑎𝑛 +
𝑏𝑛 𝑛 − 1

2
= 𝑂(𝑛2)
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O(n²) sorting algorithm: Insertion Sort

Average case: The while loop is expected to execute (i-1)/2 times for each i

T 𝑛 = 𝑛 𝑐1+ 𝑐2+ 𝑐4+ 𝑐8− 𝑐6− 𝑐7 +෍
i=2

𝑛 𝑖 − 1

2
𝑐5 + 𝑐6 + 𝑐7 −(𝑐2+ 𝑐4 + c6 − 𝑐7− 𝑐8)

= 𝑛 𝑐1+ 𝑐2+ 𝑐4+ 𝑐8− 𝑐6− 𝑐7 +෍
i=2

𝑛 𝑖 − 1

2
𝑐5 + 𝑐6 + 𝑐7 = 𝑎𝑛 +

𝑏𝑛 𝑛 − 1

4
= 𝑂(𝑛2)
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