EEREXRZ (M)

DSAA 2043 | Design and Analysis of Algorithms I

TECHNOLOGY (GUANGZHOU)

Analysis of Algorithms

> Motivations
— primitive operations
— Best/Worst/Average Case

» Asymptotic Analysis
— The Big O notation
— Big Omega and Big Theta
— Rules

»Analyzing insertion sort

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

Motivations

B FERFARFETM
[] e nrn THE HONG KONG
' Algorithmic Problem 0 e o
n

Specification
Specification of output as
of input :> :> a function of
iInput

Infinite number of input instances satisfying the
specification.

E.g., a sorted, non-decreasing sequence of natural numbers
of non-zero, finite length:

1, 20, 908, 909, 100000, 1000000000
3

' Algorithmic Solution

Input instance,

adhering to the
specification

Output
related to the
input as
required

Algorithm describes actions on the input instance

Many correct algorithms for the same algorithmic problem

BEEMBERZ (M)

¥ THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

' What is a Good Algorithm? W s

e Efficient
—Running time
—Space used

* Efficiency as a function of input size

—The number of bits in an input number
—Number of data elements (numbers, points)

' What is Analysis of Algorithms W &S S

Estimate the running time.
Estimate the memory space required.

Time and space depend on the input size.

' Measuring the Running Time Experimentally

B FERBAE (M)

T THE HONG KONG

LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

How should we measure the
running time of an algorithm?

-~
Sorting Algorithm Performance on 1000 Elements Over 10 Runs (Mean + Std)
0.16

Experimental Study

Quick Sort

Write a program that implements the algorithm

Run the program with data sets of varying size and composition

Use a system call to get an accurate measure of the actual running
time

' Limitations of Experimental Studies W e

* Must implement and test the algorithm to determine its running time

* Experiments done only on a limited set of inputs

— May not be indicative of the running time on other inputs not included in the
experiment

* To compare two algorithms, the same hardware and software
environments needed

' Beyond Experimental Studies W e

* We will develop a general methodology for analyzing running time of
algorithms. This approach

— Uses a high-level description (pseudocode) of the algorithm instead of testing
one of its implementations

— Considers all possible inputs

— Evaluates the efficiency of any algorithm being independent of the hardware
and software environment

* To achieve that, we need to

— Make simplifying assumptions about the running time of each basic (primitive)
operations

— Study how the number of primitive operations depends on the size of the
problem solved

B FEREARE(M
Primitive O ' U0 b e e
rimitive Operations U e srsinssins
-~

Simple computer operation that can be performed in time that is always
the same, independent of the size of the bigger problem solved (we say:
constant time)

— Assigning a value to a variable: x <1 Tassign

— Calling a method: Expos.addWin() Tean
— Note: doesn’ t include the time to execute the method

— Returning from a method: return x; Treturn

— Arithmetic operations on primitive types T, ith
X +y, r*¥3.1416, x/y, etc.

— Comparisons on primitive types: x==y Teomp

— Conditionals: if (...) then.. else... Teond

— Indexing into an array: A[i] Tindex

— Following object reference: Expos.losses Tref

Note: Multiplying two Large Integers is not a primitive operation, because
the running time depends on the size of the numbers multiplied.

10

B FEHBEREZ (M
M ') S e e
ore assumptions W s o oo

-

e Counting each type of primitive operations is tedious
* The running time of each operation is roughly comparable:

Tassign ® Tcomp ® Tarith ® - = Tingex = 1 primitive operation

 We are only interested in the number of primitive operations
performed

11

' Estimating Running Time for FindMin 0 s e

Algorithm findMin(A, start, stop)
Input: Array A, index start & stop
Output: Index of the smallest element of A[start:stop]

minvalue <« A[start] Tindex * Tassign
minindex <« start Tassign Running time
index « start + 1 Tarith + Tassign
while (index <= stop) do { | Tomp* Teond N
if (A[index]<minvalue) Tindex + Teomp + Tcond
then { repeated
minvalue <« Al index] Tindex + Tassign >' stop-start
minindex <« index Tassign times
}
index = index + 1 Tassign + Tarith J
} Teompt Teona (last check of loop)
return minindex Treturn

12

' Estimating Running Time for FindMin W s s

* Running time depends onn=stop—start+1

* T(n) =8+ 10 * (n-1) primitive operations
— 8 primitive operations outside the loop
— 10 primitive operations inside the loop

* How will the running time change for the following two input instances?

5 4 3 2 1 0

13

' Insertion Sort (Recap.) Wi i

Insertion Sort Step-by-Step

Algorithm InsertionSort(A) > : : ° ! ?
Input: An array A with n elements 1 2 3 A 5 6
Output: A sorted in non-decreasing order — — - - : -
1. for i « 2 to length(A) do 1 :) ; ; ;
2. key « A[i] // Current element to be inserted : —— : : :
3. j i -1 // Start comparing from the previous element
4. while j > @ and A[j] > key do 1 2 3 : : :
5. A[j + 1] « A[]j] // Shift element to the right . . . - - -
6. j e« Jj -1
7. end while 1 ;) ; ; ;
8. A[j + 1] « key // Place key in the correct position - - - . - S
9. end for
10. return A // Sorted array 1 ’ ’ ’ 5 i
1 2 3 1 5 6

14

B FEHBEREZ (M
| i S UL Sriversiry o science avo
n S e rt I O n O rt LA TECHNOLOGY (GUANGZHOU)
-~

INSERTION-SORT(A, n) cost times

1 fori =2ton C1 n

2 key = Ali] Ca n—1

3 // Insert A[i] into the sorted subarray A[l:i —1]. O n—1

4 j =1-1 C4 n—1

5 while j > 0 and A[j] > key cs Yot

6 Alj +1] = A[j] 6 2izp(ti —1)
7 j=Jj-1 7 Lim(ti—1)
8 Alj + 1] = key cs n—1

Total time T(n) =n(c; +c; +c4 +cg—cs —c7) + Xit, ti(cs + ¢4 + ¢7)

—(Ccy + ¢4+ Cg —C7 — C3)

15

' Best/Worst/Average Case Wssanss

Total time T(n) =n(ci +cy+ ¢4 +cg—co —c7) + Xit, ti(cs + ¢ + ¢7)
—(c2+ ¢4 +Co —C7—Cg)

* Best case:

— elements are already sorted; Each element only does one comparison (t.=1),
running time = f(n), i.e., linear time

 \Worst case:

— elements are sorted in reverse order; each element shifts i-1 times (t.=i-1),
running time = f(n?), i.e., quadratic time

* Average case:

— Each element moves above half of its maximum shifts (t=(i-1)/2),
running time = f(n?), i.e., quadratic time

16

- Best/Worst/Average Case ® srnass

LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

 For a specific size of input n, investigate running times for different
Input instances:

5 ms

------------ worst-case

il]
& 4ms
= average-case
)
2 3ms
E - = = Dest-case
Y 2ms

1 ms

A B C D E F G
Input Instance

17

' Best/Worst/Average Case

* For inputs of all sizes:

Running time

6n

5n

4n

3n
2n

1n

1 2 3 4 5

6 7 8 9 10 11 12

Input instance size

worst-case

average-case

best-case

BEEMBERZ (M)

UNIVERSITY OF SCIENCE AND

LT"j THE HONG KONG
A TECHNOLOGY (GUANGZHQOU)

18

' Best/Worst/Average Case Wssanss

e Worst case is usually used

— It is an upper-bound and in certain application domains (e.g., air traffic
control, surgery) knowing the worst-case time complexity is of crucial
iImportance

— For some algorithms worst case occurs fairly often
— Average case is often as bad as worst case

* Finding average case can be very difficult
* The best (fastest) case is seldom of interest

19

& FEHBZAZ (M
THE HONG KONG

Apg—
NNNNNNNNNNNNNNNNNNNNNN

L TECHNOLOGY (GUA HOU

(—

IS

Asymptotic Analysis

20

B FEHBEREZ (M
A ic A lvsi UL Sriversiry o science avo
symptotic Analysis W ecsnsrecmes ot
-~

e Goal: to simplify analysis of running time by getting rid of “details”,
which may be affected by specific implementation and hardware
— like “rounding”: 1,000,001 = 1,000,000
—3n?=n?
e Capturing the essence: how the running time of an algorithm
increases with the size of the input in the limit
— Asymptotically more efficient algorithms are best for all but small inputs

21

' Asymptotic Notation

- The “Big-Oh” O-Notation
- asymptotic upper bound
- f(n)is O(g(n)), if there exists constants c and n,,
s.t. f(n) <c-g(n) for all n > n,
= t(n) is asymptotically bounded above by g(n)
- f(n) and g(n) are functions over non-negative integers

— We usually assume both f(n)
and g(n) are non-negative too

- Used for worst-case analysis

B FEHBEREZ (M

T THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

c-g(n)
f(n)

Running Time

No Input Size

22

' Example

For functions f(n) and g(n) there are positive

constants c and ny such that: f(n) £ c g(n) for n 2 n,

conclusion:

2n+6 is O(n)

90 21 22 93 a4 925 96 o7

f(n)=2n +6

B FEHBEREZ (M
T THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

23

B FEHBEREZ (M
A h = l U niversivy of science ano
n O t e r xa m p e LA TECHNOLOGY (GUANGZHOU)

On the other hand ...

nZ is not O(n) because there

is no ¢ and ny such that:
nzZ<cnfornzng

The figure to the right
illustrates that no matter how
large a c is chosen there is an
n big enough that n2> cn

93 94 25 96 o7

21

gln=n

20 5l

n

g0 gl ol 23H ATV ?ﬂ'

24

' Asymptotic Notation

BEEMBERZ (M)
([]

@ THE HONG KONG

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

Simple Rule: Drop lower order terms and constant factors
50nlognisO()
« 7n-3is0O()

8n2logn+5n2+nisO()

25

' Asymptotic Analysis of Running Time W e

* Use O-notation to express number of primitive operations executed
as function of input size

* Comparing asymptotic running times
— an algorithm that runs in O(n) time is better than one that runs in O(n2) time
— similarly, O(log n) is better than O(n)
— hierarchy of functions: logn<n<n2<n3<2n

e Caution! Beware of very large constant factors. An algorithm running
in time 1,000,000 n is still O(n) but might be less efficient than one
running in time 2n?, which is O(n?)

26

B FEHBEREZ (M
= THE HONG KONG

LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

' Example of Asymptotic Analysis

Algorithm prefixAveragesl(X)
Input: An n-element array X of numbers

Output: An n-element array A of numbers such that Ali] is the average
of elements X[1], ..., X[i]

for 1 « 1 to n do
a <« 0
for j « 1 to 1 do
a <« a+X[7j]
Ali] « a/i
return array A

\

i iterations with > n iterations

1=1,2,...,n

«—1 step }

Analysis: running time is O(n?)
27

- A Better Algorithm s

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

Algorithm prefixAverages2(X)
Input: An n-element array X of numbers

Output: An n-element array A of numbers such that A[i] is the
average of elements X[1], ..., X]i]

S « 0

for 1 « 1 to n do
S « s + X[i]
A[i] « s/i
return array A

Analysis: Running time is ...

28

' Asymptotic Notation (Terminology)

B FEREARE(M

@ THE HONG KONG

UNIVERSITY OF SCIENCE AND

Special classes of algorithms:

Logarithmic: O(log n)
Linear: O(n)
Quadratic: O(n2)

Polynomial: O(n¥), k> 1
Exponential: O(a"),a>1

“Relatives” of the Big-Oh

Q (f(n)): Big Omega-asymptotic lower bound
© (f(n)): Big Theta-asymptotic tight bound

29

© manaxriw
What does O(1) mean? W st ione e
n

We say t(n) is O(1), if there exist two positive constants ng
and c such that, for all n = ny.

t(n) <c

So, it means that t(n) is bounded.

30

B FEHBEREZ (M
A icN I UL Sriversiry o science avo
symptotic Notation W ecsnsrecmes ot

-~

- The “Big-Omega” Q-Notation
asymptotic lower bound
- f(n)is Q(g(n)) if there exists constants c and
ngy s.t. c g(n) £f(n) for n > n,

»
»

Running Time

- Used to describe best-case running
times or lower bounds for algorithmic .
problems N0 nput Size

E.g., lower-bound for searching in an
unsorted array is Q(n)

31

' Asymptotic Notation

B FEREARE(M

1 THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

The “Big-Theta” ©-Notation
- asymptotically tight bound

- f(n) is ©(g(n)) if there exists constants ¢4, C,,
and ny, s.t. ¢; g(n) £f(n) <c, g(n) forn>n,

f(n) is ©(g(n)) if and only if f(n) is O(g(n))
and f(n) is Q(g(n))

Running Time

Ny

Input Size

O(f(n)) is often misused instead of
O(f(n))

32

B FERFARFETM
o e W THE HONG KONG
- Asymptotic Notation T esrsrsana s
-~

Two more asymptotic notations
"Little-oh" notation f(n) is o(g(n))
non-tight analogue of Big-Oh

For every ¢ > 0, there should exist ny, s.t.
f(n) <c g(n) for n = n,

Used for comparisons of running times
If f(n) is o(g(n)), it is said that g(n) dominates f(n)

"Little-omega" notation f(n) is w(g(n))
non-tight analogue of Big-Omega

33

B FEHBEREZ (M
A icN I UL Sriversiry o science avo
symptotic Notation W ecsnsrecmes ot

-~

- Analogy with real numbers o(n)
f(n) is O(g(n)) = f<g f(n)
f(n) iIs Q(g(n)) = f2g g 0
f(n)is©(gn) = f=g P
f(n)iso(g(n)) = f<g y y
f(n)is w(g(n)) = f>g L

- Abuse of notation: f(n) = O(g(n)) actually means f(n) EO(g(n))

The big O (resp. big (1) denotes a tight upper (resp. lower) bounds, while
the little o (resp. little w) denotes a loose upper (resp. lower) bounds.
34

' Practical meaning of big O... W e

constant | logarithmic |linear | N-log-N |quadratic| cubic | exponential
O(n log o(n") o(n?)

n| O@1) | O@ogn) |Om) n) omn?) | o o@2h

1 1 1 1 1 1 1 2 o(n)
2 1 1 2 2 4 8 4

4 1 2 4 8 16 64 16| ° Oflog)
8 1 3 8 24 64 512 256

16 1 4l 16 64 256| 4,096 65536 L
32 1 5 32 160 1,024 | 32,768(4,294,967,296

Input (number)

64 1 6| 64 384 4,069(262.144| 1.84x10'°|

-

If the unit is in seconds, this would make ~1011 years... -

' Constant Factor Rule

B FEREARE(M

@ THE HONG KONG

UNIVERSITY OF SCIENCE AND

Suppose f(n) is O(g(n)) and a is a positive constant.
Then, a - f(n)isalso 0(g(n))

Proof: By definition, if f(n) is O(g(n)) then there exists two
positive constants ny and ¢ such that for all n = n,,

fm) =c-gn)
Thus, a-f(n)y<a-c-gn)

We use the constant a - c to show thata - f(n) is 0(g(n)).

Multiplying a function by a constant does not change its Big O upper
bound since these upper bounds ignore constants

36

B FERFARFETM
=== THE HONG KONG
S u m R u I e LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

Suppose f1(n) is 0(g(n)) and f,(n) is 0(g(n)).
Then, f1(n) + f,(n) is 0(g(n)).

Proof: Let n{, c; and n,, ¢, be constants such that
f1(n) < cig(n), foralln = nyq
fo(n) < cpg(n), foralln = n,
So, f1(n) + f,(n) < (c;+cy)g(n), forall n = max(nq,ny).

We can use the constants ¢; + ¢, and max(n4,n,) to satisfy
the definition.

A sum of two functions is inferior to a sum of two greater functions

37

B FERFARFETM
== THE HONG KONG
P ro d u ct R u I e LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

Suppose f1(n) is 0(g(n)) and f,(n) is 0(g(n)).
Then, fi(n) - fo(n) is 0(g1(n) - g2(n)).

Proof: Let n4, ¢; and n,, ¢, be constants such that
f]_(n) < Clgl(n), foralln > n
fo(n) <cyg,(n), foralln = n,

So, fi(n) - 2(n) < (c1- ¢2) - (g1 (n) - g2(n)) , for all n =
max(nq,n,).

We can use the constants ¢4 - ¢, and max(nq,n,) to satisfy
the definition.

A product of two functions is less than a product of two greater functions
38

' Transitivity Rule

Suppose f(n) is 0(g(n)) and g(n) is O(h(n)).
Then, f(n)is 0(h(n)).

B FEREARE(M

0 THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

Proof: Let n{, c; and n,, ¢, be constants such that

f(n) <cig(n), foralln = ng
gn) < cyh(n), foralln = n,

So, f(n) < (c1° cp)h(n), foralln = max(nq,n,).

We can use the constants ¢ - ¢c; and max(nq,n,) to satisfy
the definition.

If a function A is greater than function B, and function B is greater than
function C, then function A is greater than function C

39

& FEHBZAZ (M
THE HONG KONG

Apg—
NNNNNNNNNNNNNNNNNNNNNN

L TECHNOLOGY (GUA HOU

(—

IS

Analyzing insertion sort

40

' O(n?) sorting algorithm: Insertion Sort Wi e

INSERTION-SORT(A, n) cost times

1 fori =2ton C1 n

2 key = Ali] Ca n—1

3 // Insert A[i] into the sorted subarray A[l:i —1]. O n—1

4 j =1-1 C4 n—1

5 while j > 0 and A[j] > key cs Yot

6 Alj +1] = A[j] 6 2izp(ti —1)
7 j=Jj-1 7 Lim(ti—1)
8 Alj + 1] = key cs n—1

Best case: A is sorted, while loop does not execute.

T(n) =n(ci+c,+cs+cg—ce—c7) +(n—1)c
—(¢; + ¢4 + cg — ¢7 — €5)=0(n)

41

' O(n?) sorting algorithm: Insertion Sort 0 s e

INSERTION-SORT(A, n) cost times

1 fori =2ton C1 n

2 key = Ali] Ca n—1

3 // Insert A[i] into the sorted subarray A[l:i —1]. O n—1

4 j =1-1 C4 n—1

5 while j > 0 and A[j] > key cs Yot

6 Alj +1] = A[j] e 2izn(ti =1)
7 j=Jj-1 7 Lim(ti—1)
8 Alj + 1] = key cs n—1

Worse case: A is reverse-ordered. The while loop execute i-1 times for each i

n
T(Tl) =TL(C1+C2+C4+C8—C6—C7) +z (i—l)(C5+C6+C7) —(C2+C4+C6—C7—C8)
=2

bn(n — 1)
2

n
=n(c1+c2+c4+08—c6—c7)+z (i—1)(cs+cg+cy;) =an+ = 0(n?)
i=2

42

' O(n?) sorting algorithm: Insertion Sort 0 s e

INSERTION-SORT(A, n) cost times

1 fori =2ton C1 n

2 key = Ali] Ca n—1

3 // Insert A[i] into the sorted subarray A[l:i —1]. O n—1

4 j =1-1 C4 n—1

5 while j > 0 and A[j] > key cs Yot

6 Alj +1] = A[j] e 2izn(ti =1)
7 j=Jj-1 7 Lim(ti—1)
8 Alj + 1] = key cs n—1

Average case: The while loop is expected to execute (i-1)/2 times for each i

n ;—1
j=2 2

i—1 bn(n —1)
> (cs+cg+cy) =an+ 2

T(n)=n(c1+cz+c4+c8—c6—c7)+z (cs+ce+c7) —(cp+ca+cg—c7—cg)

n
=n(c1+cz+c4+c8—c6—c7)+z = 0(n?)
i=2

43

	Slide 1: Analysis of Algorithms
	Slide 2: Motivations
	Slide 3: Algorithmic Problem​
	Slide 4: Algorithmic Solution
	Slide 5: What is a Good Algorithm?
	Slide 6: What is Analysis of Algorithms
	Slide 7: Measuring the Running Time Experimentally
	Slide 8: Limitations of Experimental Studies
	Slide 9: Beyond Experimental Studies
	Slide 10: Primitive Operations
	Slide 11: More assumptions
	Slide 12: Estimating Running Time for FindMin
	Slide 13: Estimating Running Time for FindMin
	Slide 14: Insertion Sort (Recap.)
	Slide 15: Insertion Sort
	Slide 16: Best/Worst/Average Case
	Slide 17: Best/Worst/Average Case
	Slide 18: Best/Worst/Average Case
	Slide 19: Best/Worst/Average Case
	Slide 20: Asymptotic Analysis
	Slide 21: Asymptotic Analysis
	Slide 22: Asymptotic Notation
	Slide 23: Example
	Slide 24: Another Example
	Slide 25: Asymptotic Notation
	Slide 26: Asymptotic Analysis of Running Time
	Slide 27: Example of Asymptotic Analysis
	Slide 28: A Better Algorithm
	Slide 29: Asymptotic Notation (Terminology)
	Slide 30: What does O(1) mean?
	Slide 31: Asymptotic Notation
	Slide 32: Asymptotic Notation
	Slide 33: Asymptotic Notation
	Slide 34: Asymptotic Notation
	Slide 35: Practical meaning of big O…
	Slide 36: Constant Factor Rule
	Slide 37: Sum Rule
	Slide 38: Product Rule
	Slide 39: Transitivity Rule
	Slide 40: Analyzing insertion sort
	Slide 41: O(n²) sorting algorithm: Insertion Sort
	Slide 42: O(n²) sorting algorithm: Insertion Sort
	Slide 43: O(n²) sorting algorithm: Insertion Sort

