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Specification
Specification of output as
of input :> :> a function of
iInput

Infinite number of input instances satisfying the
specification.

E.g., a sorted, non-decreasing sequence of natural numbers
of non-zero, finite length:

1, 20, 908, 909, 100000, 1000000000
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' Algorithmic Solution

Input instance,

adhering to the
specification

Output
related to the
input as
required

Algorithm describes actions on the input instance

Many correct algorithms for the same algorithmic problem
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' What is a Good Algorithm? W s

e Efficient
—Running time
—Space used

* Efficiency as a function of input size

—The number of bits in an input number
—Number of data elements (numbers, points)



' What is Analysis of Algorithms W &S S

Estimate the running time.
Estimate the memory space required.

Time and space depend on the input size.



' Measuring the Running Time Experimentally
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How should we measure the
running time of an algorithm?

-~
Sorting Algorithm Performance on 1000 Elements Over 10 Runs (Mean + Std)
0.16

Experimental Study

Quick Sort

Write a program that implements the algorithm

Run the program with data sets of varying size and composition

Use a system call to get an accurate measure of the actual running
time



' Limitations of Experimental Studies W e

* Must implement and test the algorithm to determine its running time

* Experiments done only on a limited set of inputs

— May not be indicative of the running time on other inputs not included in the
experiment

* To compare two algorithms, the same hardware and software
environments needed



' Beyond Experimental Studies W e

* We will develop a general methodology for analyzing running time of
algorithms. This approach

— Uses a high-level description (pseudocode) of the algorithm instead of testing
one of its implementations

— Considers all possible inputs

— Evaluates the efficiency of any algorithm being independent of the hardware
and software environment

* To achieve that, we need to

— Make simplifying assumptions about the running time of each basic (primitive)
operations

— Study how the number of primitive operations depends on the size of the
problem solved
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Simple computer operation that can be performed in time that is always
the same, independent of the size of the bigger problem solved (we say:
constant time)

— Assigning a value to a variable: x <1 Tassign

— Calling a method: Expos.addWin() Tean
— Note: doesn’ t include the time to execute the method

— Returning from a method: return x; Treturn

— Arithmetic operations on primitive types T, ith
X +y, r*¥3.1416, x/y, etc.

— Comparisons on primitive types: x==y Teomp

— Conditionals: if (...) then.. else... Teond

— Indexing into an array: A[i] Tindex

— Following object reference: Expos.losses Tref

Note: Multiplying two Large Integers is not a primitive operation, because
the running time depends on the size of the numbers multiplied.

10
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e Counting each type of primitive operations is tedious
* The running time of each operation is roughly comparable:

Tassign ® Tcomp ® Tarith ® - = Tingex = 1 primitive operation

 We are only interested in the number of primitive operations
performed

11



' Estimating Running Time for FindMin 0 s e

Algorithm findMin(A, start, stop)
Input: Array A, index start & stop
Output: Index of the smallest element of A[start:stop]

minvalue <« A[start] Tindex * Tassign
minindex <« start Tassign Running time
index « start + 1 Tarith + Tassign
while ( index <= stop ) do { | Tomp* Teond N
if (A[index]<minvalue) Tindex + Teomp + Tcond
then { repeated
minvalue <« Al index ] Tindex + Tassign >' stop-start
minindex <« index Tassign times
}
index = index + 1 Tassign + Tarith J
} Teompt Teona (last check of loop)
return minindex Treturn

12



' Estimating Running Time for FindMin W s s

* Running time depends onn=stop—start+1

* T(n) =8+ 10 * (n-1) primitive operations
— 8 primitive operations outside the loop
— 10 primitive operations inside the loop

* How will the running time change for the following two input instances?

5 4 3 2 1 0

13



' Insertion Sort (Recap.) Wi i

Insertion Sort Step-by-Step

Algorithm InsertionSort(A) > : : ° ! ?
Input: An array A with n elements 1 2 3 A 5 6
Output: A sorted in non-decreasing order — — - - : -
1. for i « 2 to length(A) do 1 : ) ; ; ;
2. key « A[i] // Current element to be inserted : —— : : :
3. j i -1 // Start comparing from the previous element
4. while j > @ and A[j] > key do 1 2 3 : : :
5. A[j + 1] « A[]j] // Shift element to the right . . . - - -
6. j e« Jj -1
7. end while 1 ; ) ; ; ;
8. A[j + 1] « key // Place key in the correct position - - - . - S
9. end for
10. return A // Sorted array 1 ’ ’ ’ 5 i
1 2 3 1 5 6

14
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INSERTION-SORT(A, n) cost times

1 fori =2ton C1 n

2 key = Ali] Ca n—1

3 // Insert A[i] into the sorted subarray A[l:i —1]. O n—1

4 j =1-1 C4 n—1

5 while j > 0 and A[j] > key cs Yot

6 Alj +1] = A[j] 6 2izp(ti —1)
7 j=Jj-1 7 Lim(ti—1)
8 Alj + 1] = key cs n—1

Total time T(n) =n(c; +c; +c4 +cg—cs —c7) + Xit, ti(cs + ¢4 + ¢7)

—(Ccy + ¢4+ Cg —C7 — C3)

15



' Best/Worst/Average Case Wssanss

Total time T(n) =n(ci +cy+ ¢4 +cg—co —c7) + Xit, ti(cs + ¢ + ¢7)
—(c2+ ¢4 +Co —C7—Cg)

* Best case:

— elements are already sorted; Each element only does one comparison (t.=1),
running time = f(n), i.e., linear time

 \Worst case:

— elements are sorted in reverse order; each element shifts i-1 times (t.=i-1),
running time = f(n?), i.e., quadratic time

* Average case:

— Each element moves above half of its maximum shifts (t=(i-1)/2),
running time = f(n?), i.e., quadratic time

16
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 For a specific size of input n, investigate running times for different
Input instances:

5 ms

------------ worst-case

il ]
& 4ms
= average-case
)
2 3ms
E - = = Dest-case
Y 2ms

1 ms

A B C D E F G
Input Instance
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' Best/Worst/Average Case

* For inputs of all sizes:

Running time

6n

5n

4n

3n
2n

1n

1 2 3 4 5

6 7 8 9 10 11 12

Input instance size

worst-case

average-case

best-case
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' Best/Worst/Average Case Wssanss

e Worst case is usually used

— It is an upper-bound and in certain application domains (e.g., air traffic
control, surgery) knowing the worst-case time complexity is of crucial
iImportance

— For some algorithms worst case occurs fairly often
— Average case is often as bad as worst case

* Finding average case can be very difficult
* The best (fastest) case is seldom of interest
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Asymptotic Analysis
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e Goal: to simplify analysis of running time by getting rid of “details”,
which may be affected by specific implementation and hardware
— like “rounding”: 1,000,001 = 1,000,000
—3n?=n?
e Capturing the essence: how the running time of an algorithm
increases with the size of the input in the limit
— Asymptotically more efficient algorithms are best for all but small inputs

21



' Asymptotic Notation

- The “Big-Oh” O-Notation
- asymptotic upper bound
- f(n)is O(g(n)), if there exists constants c and n,,
s.t. f(n) <c-g(n) for all n > n,
= t(n) is asymptotically bounded above by g(n)
- f(n) and g(n) are functions over non-negative integers

—  We usually assume both f(n)
and g(n) are non-negative too

- Used for worst-case analysis

B FEHBEREZ (M

T THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

c-g(n)
f(n)

Running Time

No Input Size
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' Example

For functions f(n) and g(n) there are positive

constants c and ny such that: f(n) £ c g(n) for n 2 n,

conclusion:

2n+6 is O(n)

90 21 22 93 a4 925 96 o7

f(n)=2n +6

B FEHBEREZ (M
T THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

23



B FEHBEREZ (M
A h = l U niversivy of science ano
n O t e r xa m p e LA TECHNOLOGY (GUANGZHOU)

On the other hand ...

nZ is not O(n) because there

is no ¢ and ny such that:
nzZ<cnfornzng

The figure to the right
illustrates that no matter how
large a c is chosen there is an
n big enough that n2> cn

93 94 25 96 o7

21

gln=n

20 5l

n

g0 gl ol 23H ATV ?ﬂ'
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' Asymptotic Notation
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Simple Rule: Drop lower order terms and constant factors
50nlognisO( )
« 7n-3is0O( )

8n2logn+5n2+nisO( )

25



' Asymptotic Analysis of Running Time W e

* Use O-notation to express number of primitive operations executed
as function of input size

* Comparing asymptotic running times
— an algorithm that runs in O(n) time is better than one that runs in O(n2) time
— similarly, O(log n) is better than O(n)
— hierarchy of functions: logn<n<n2<n3<2n

e Caution! Beware of very large constant factors. An algorithm running
in time 1,000,000 n is still O(n) but might be less efficient than one
running in time 2n?, which is O(n?)

26
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' Example of Asymptotic Analysis

Algorithm prefixAveragesl(X)
Input: An n-element array X of numbers

Output: An n-element array A of numbers such that Ali] is the average
of elements X[1], ..., X[i]

for 1 « 1 to n do
a <« 0
for j « 1 to 1 do
a <« a+X[7j]
Ali] « a/i
return array A

\

i iterations with > n iterations

1=1,2,...,n

«—1 step }

Analysis: running time is O(n?)
27



- A Better Algorithm s
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Algorithm prefixAverages2(X)
Input: An n-element array X of numbers

Output: An n-element array A of numbers such that A[i] is the
average of elements X[1], ..., X]i]

S « 0

for 1 « 1 to n do
S « s + X[i]
A[i] « s/i
return array A

Analysis: Running time is ...

28



' Asymptotic Notation (Terminology)
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Special classes of algorithms:

Logarithmic: O(log n)
Linear: O(n)
Quadratic: O(n2)

Polynomial: O(n¥), k> 1
Exponential: O(a"),a>1

“Relatives” of the Big-Oh

Q (f(n)): Big Omega-asymptotic lower bound
© (f(n)): Big Theta-asymptotic tight bound

29
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What does O(1) mean? W st ione e
n

We say t(n) is O(1), if there exist two positive constants ng
and c such that, for all n = ny.

t(n) <c

So, it means that t(n) is bounded.

30
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- The “Big-Omega” Q-Notation
asymptotic lower bound
- f(n)is Q(g(n)) if there exists constants c and
ngy s.t. c g(n) £f(n) for n > n,

»
»

Running Time

- Used to describe best-case running
times or lower bounds for algorithmic .
problems N0 nput Size

E.g., lower-bound for searching in an
unsorted array is Q(n)

31



' Asymptotic Notation
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The “Big-Theta” ©-Notation
- asymptotically tight bound

- f(n) is ©(g(n)) if there exists constants ¢4, C,,
and ny, s.t. ¢; g(n) £f(n) <c, g(n) forn>n,

f(n) is ©(g(n)) if and only if f(n) is O(g(n))
and f(n) is Q(g(n))

Running Time

Ny

Input Size

O(f(n)) is often misused instead of
O(f(n))

32
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Two more asymptotic notations
"Little-oh" notation f(n) is o(g(n))
non-tight analogue of Big-Oh

For every ¢ > 0, there should exist ny, s.t.
f(n) <c g(n) for n = n,

Used for comparisons of running times
If f(n) is o(g(n)), it is said that g(n) dominates f(n)

"Little-omega" notation f(n) is w(g(n))
non-tight analogue of Big-Omega

33
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- Analogy with real numbers o(n)
f(n) is O(g(n)) = f<g f(n)
f(n) iIs Q(g(n)) = f2g g 0
f(n)is©(gn) =  f=g P
f(n)iso(g(n)) =  f<g y y
f(n)is w(g(n)) =  f>g L

- Abuse of notation: f(n) = O(g(n)) actually means f(n) EO(g(n))

The big O (resp. big (1) denotes a tight upper (resp. lower) bounds, while
the little o (resp. little w) denotes a loose upper (resp. lower) bounds.
34



' Practical meaning of big O... W e

constant | logarithmic |linear | N-log-N |quadratic| cubic | exponential
O(n log o(n") o(n?)

n| O@1) | O@ogn) |Om) n) omn?) | o o@2h

1 1 1 1 1 1 1 2 o(n)
2 1 1 2 2 4 8 4

4 1 2 4 8 16 64 16| ° Oflog )
8 1 3 8 24 64 512 256

16 1 4l 16 64 256| 4,096 65536 L
32 1 5 32 160 1,024 | 32,768(4,294,967,296

Input (number)

64 1 6| 64 384 4,069(262.144| 1.84x10'°|

-

If the unit is in seconds, this would make ~1011 years... -



' Constant Factor Rule
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Suppose f(n) is O(g(n)) and a is a positive constant.
Then, a - f(n)isalso 0(g(n))

Proof: By definition, if f(n) is O(g(n)) then there exists two
positive constants ny and ¢ such that for all n = n,,

fm) =c-gn)
Thus, a-f(n)y<a-c-gn)

We use the constant a - c to show thata - f(n) is 0(g(n)).

Multiplying a function by a constant does not change its Big O upper
bound since these upper bounds ignore constants

36
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Suppose f1(n) is 0(g(n)) and f,(n) is 0(g(n)).
Then, f1(n) + f,(n) is 0(g(n)).

Proof: Let n{, c; and n,, ¢, be constants such that
f1(n) < cig(n), foralln = nyq
fo(n) < cpg(n), foralln = n,
So, f1(n) + f,(n) < (c;+cy)g(n), forall n = max(nq,ny).

We can use the constants ¢; + ¢, and max(n4,n,) to satisfy
the definition.

A sum of two functions is inferior to a sum of two greater functions

37
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Suppose f1(n) is 0(g(n)) and f,(n) is 0(g(n)).
Then, fi(n) - fo(n) is 0(g1(n) - g2(n)).

Proof: Let n4, ¢; and n,, ¢, be constants such that
f]_(n) < Clgl(n), foralln > n
fo(n) <cyg,(n), foralln = n,

So, fi(n) - 2(n) < (c1- ¢2) - (g1 (n) - g2(n)) , for all n =
max(nq,n,).

We can use the constants ¢4 - ¢, and max(nq,n,) to satisfy
the definition.

A product of two functions is less than a product of two greater functions
38



' Transitivity Rule

Suppose f(n) is 0(g(n)) and g(n) is O(h(n)).
Then, f(n)is 0(h(n)).
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Proof: Let n{, c; and n,, ¢, be constants such that

f(n) <cig(n), foralln = ng
gn) < cyh(n), foralln = n,

So, f(n) < (c1° cp)h(n), foralln = max(nq,n,).

We can use the constants ¢ - ¢c; and max(nq,n,) to satisfy
the definition.

If a function A is greater than function B, and function B is greater than
function C, then function A is greater than function C

39
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Analyzing insertion sort
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' O(n?) sorting algorithm: Insertion Sort Wi e

INSERTION-SORT(A, n) cost times

1 fori =2ton C1 n

2 key = Ali] Ca n—1

3 // Insert A[i] into the sorted subarray A[l:i —1]. O n—1

4 j =1-1 C4 n—1

5 while j > 0 and A[j] > key cs Yot

6 Alj +1] = A[j] 6 2izp(ti —1)
7 j=Jj-1 7 Lim(ti—1)
8 Alj + 1] = key cs n—1

Best case: A is sorted, while loop does not execute.

T(n) =n(ci+c,+cs+cg—ce—c7) +(n—1)c
—(¢; + ¢4 + cg — ¢7 — €5)=0(n)

41



' O(n?) sorting algorithm: Insertion Sort 0 s e

INSERTION-SORT(A, n) cost times

1 fori =2ton C1 n

2 key = Ali] Ca n—1

3 // Insert A[i] into the sorted subarray A[l:i —1]. O n—1

4 j =1-1 C4 n—1

5 while j > 0 and A[j] > key cs Yot

6 Alj +1] = A[j] e 2izn(ti =1)
7 j=Jj-1 7 Lim(ti—1)
8 Alj + 1] = key cs n—1

Worse case: A is reverse-ordered. The while loop execute i-1 times for each i

n
T(Tl) =TL(C1+C2+C4+C8—C6—C7) +z (i—l)(C5+C6+C7) —(C2+C4+C6—C7—C8)
=2

bn(n — 1)
2

n
=n(c1+c2+c4+08—c6—c7)+z (i—1)(cs+cg+cy;) =an+ = 0(n?)
i=2

42



' O(n?) sorting algorithm: Insertion Sort 0 s e

INSERTION-SORT(A, n) cost times

1 fori =2ton C1 n

2 key = Ali] Ca n—1

3 // Insert A[i] into the sorted subarray A[l:i —1]. O n—1

4 j =1-1 C4 n—1

5 while j > 0 and A[j] > key cs Yot

6 Alj +1] = A[j] e 2izn(ti =1)
7 j=Jj-1 7 Lim(ti—1)
8 Alj + 1] = key cs n—1

Average case: The while loop is expected to execute (i-1)/2 times for each i

n ;—1
j=2 2

i—1 bn(n —1)
> (cs+cg+cy) =an+ 2

T(n)=n(c1+cz+c4+c8—c6—c7)+z (cs+ce+c7) —(cp+ca+cg—c7—cg)

n
=n(c1+cz+c4+c8—c6—c7)+z = 0(n?)
i=2

43
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