
DSAA 2043 | Design and Analysis of Algorithms

Analysis of Algorithms

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

➢Motivations
– primitive operations

– Best/Worst/Average Case

➢Asymptotic Analysis
– The Big O notation

– Big Omega and Big Theta

– Rules

➢Analyzing insertion sort

1

Motivations

2

Algorithmic Problem​

3

Specification
of input

?

Specification
of output as

a function of
input

• Infinite number of input instances satisfying the

specification.

• E.g., a sorted, non-decreasing sequence of natural numbers

of non-zero, finite length:

• 1, 20, 908, 909, 100000, 1000000000

• 3

Algorithmic Solution

4

• Algorithm describes actions on the input instance

• Many correct algorithms for the same algorithmic problem

Input instance,
adhering to the
specification

Algorithm Output
related to the
input as
required

What is a Good Algorithm?

• Efficient
– Running time

– Space used

• Efficiency as a function of input size
– The number of bits in an input number

– Number of data elements (numbers, points)

5

What is Analysis of Algorithms

Estimate the running time.

Estimate the memory space required.

Time and space depend on the input size.

6

Measuring the Running Time Experimentally

How should we measure the
running time of an algorithm?

Experimental Study

• Write a program that implements the algorithm

• Run the program with data sets of varying size and composition

• Use a system call to get an accurate measure of the actual running
time

7

Limitations of Experimental Studies

• Must implement and test the algorithm to determine its running time

• Experiments done only on a limited set of inputs
– May not be indicative of the running time on other inputs not included in the

experiment

• To compare two algorithms, the same hardware and software
environments needed

8

Beyond Experimental Studies

• We will develop a general methodology for analyzing running time of
algorithms. This approach

– Uses a high-level description (pseudocode) of the algorithm instead of testing
one of its implementations

– Considers all possible inputs

– Evaluates the efficiency of any algorithm being independent of the hardware
and software environment

• To achieve that, we need to
– Make simplifying assumptions about the running time of each basic (primitive)

operations

– Study how the number of primitive operations depends on the size of the
problem solved

9

Primitive Operations

Simple computer operation that can be performed in time that is always
the same, independent of the size of the bigger problem solved (we say:
constant time)

Note: Multiplying two Large Integers is not a primitive operation, because
the running time depends on the size of the numbers multiplied.

10

More assumptions

• Counting each type of primitive operations is tedious

• The running time of each operation is roughly comparable:

• We are only interested in the number of primitive operations
performed

11

Estimating Running Time for FindMin

12

Estimating Running Time for FindMin

• Running time depends on n = stop – start + 1

• T(n) = 8 + 10 * (n-1) primitive operations
– 8 primitive operations outside the loop

– 10 primitive operations inside the loop

• How will the running time change for the following two input instances?

0 1 2 3 4 5

5 4 3 2 1 0

13

Insertion Sort (Recap.)

Algorithm InsertionSort(A)
Input: An array A with n elements
Output: A sorted in non-decreasing order

1. for i ← 2 to length(A) do
2. key ← A[i] // Current element to be inserted
3. j ← i - 1 // Start comparing from the previous element
4. while j > 0 and A[j] > key do
5. A[j + 1] ← A[j] // Shift element to the right
6. j ← j - 1
7. end while
8. A[j + 1] ← key // Place key in the correct position
9. end for

10. return A // Sorted array

14

Insertion Sort

Total time T 𝑛 = 𝑛 𝑐1 + 𝑐2 + 𝑐4 + 𝑐8 − 𝑐6 − 𝑐7 + σi=2
𝑛 𝑡i 𝑐5 + 𝑐6 + 𝑐7

−(𝑐2 + 𝑐4 + c6 − 𝑐7 − 𝑐8)

15

Best/Worst/Average Case

• Best case:
– elements are already sorted; Each element only does one comparison (ti=1),

running time = f(n), i.e., linear time

• Worst case:
– elements are sorted in reverse order; each element shifts i-1 times (ti=i-1),

running time = f(n2), i.e., quadratic time

• Average case:
– Each element moves above half of its maximum shifts (ti=(i-1)/2),

running time = f(n2), i.e., quadratic time

Total time T 𝑛 = 𝑛 𝑐1 + 𝑐2 + 𝑐4 + 𝑐8 − 𝑐6 − 𝑐7 + σi=2
𝑛 𝑡i 𝑐5 + 𝑐6 + 𝑐7

−(𝑐2 + 𝑐4 + c6 − 𝑐7 − 𝑐8)

16

Best/Worst/Average Case

• For a specific size of input n, investigate running times for different
input instances:

17

Best/Worst/Average Case

• For inputs of all sizes:

4n

5n

6n

R
u

n
n

in
g

ti
m

e

3n

2n

1n

1 2 3 4 5 6 7 8 9 10 11 12 …..

Input instance size

best-case

average-case

worst-case

18

Best/Worst/Average Case

• Worst case is usually used
– It is an upper-bound and in certain application domains (e.g., air traffic

control, surgery) knowing the worst-case time complexity is of crucial
importance

– For some algorithms worst case occurs fairly often

– Average case is often as bad as worst case

• Finding average case can be very difficult

• The best (fastest) case is seldom of interest

19

Asymptotic Analysis

20

Asymptotic Analysis

• Goal: to simplify analysis of running time by getting rid of “details”,
which may be affected by specific implementation and hardware

– like “rounding”: 1,000,001 ≈ 1,000,000

– 3n2 ≈ n2

• Capturing the essence: how the running time of an algorithm
increases with the size of the input in the limit

– Asymptotically more efficient algorithms are best for all but small inputs

21

Asymptotic Notation

• The “Big-Oh” O-Notation
• asymptotic upper bound

• f(n) is O(g(n)), if there exists constants c and n0,
s.t. f(n) ≤ c⋅g(n) for all n ≥ n0

→ 𝑡(𝑛) is asymptotically bounded above by 𝑔(𝑛)

• f(n) and g(n) are functions over non-negative integers

– We usually assume both f(n)

and g(n) are non-negative too

• Used for worst-case analysis

n0 Input Size

R
u
n
n
in

g
T
im

e

c ⋅ g(n)
f (n)

22

Example

For functions f(n) and g(n) there are positive
constants c and n0 such that: f(n) ≤ c g(n) for n ≥ n0

f(n) = 2n + 6

conclusion:

2n+6 is O(n)

23

Another Example

On the other hand …
n2 is not O(n) because there
is no c and n0 such that:

n2 ≤ cn for n ≥ n0

The figure to the right
illustrates that no matter how
large a c is chosen there is an
n big enough that n2 > cn

24

Asymptotic Notation

• Simple Rule: Drop lower order terms and constant factors

• 50 n log n is O()

• 7n - 3 is O()

• 8n2 log n + 5n2 + n is O()

25

Asymptotic Analysis of Running Time

• Use O-notation to express number of primitive operations executed
as function of input size

• Comparing asymptotic running times
– an algorithm that runs in O(n) time is better than one that runs in O(n2) time

– similarly, O(log n) is better than O(n)

– hierarchy of functions: log n < n < n2 < n3 < 2n

• Caution! Beware of very large constant factors. An algorithm running
in time 1,000,000 n is still O(n) but might be less efficient than one
running in time 2n2, which is O(n2)

26

Example of Asymptotic Analysis

Algorithm prefixAverages1(X)

Input: An n-element array X of numbers

Output: An n-element array A of numbers such that A[i] is the average
of elements X[1], ..., X[i]

for i ← 1 to n do

a ← 0

for j ← 1 to i do

a ← a+X[j]

A[i] ← a/i

return array A

Analysis: running time is O(n2)

1 step

i iterations with
i=1,2,...,n

n iterations

27

A Better Algorithm

Algorithm prefixAverages2(X)

Input: An n-element array X of numbers

Output: An n-element array A of numbers such that A[i] is the

average of elements X[1], ... , X[i]

s ← 0

for i ← 1 to n do

s ← s + X[i]

A[i] ← s/i

return array A

Analysis: Running time is …

28

Asymptotic Notation (Terminology)

• Special classes of algorithms:

• Logarithmic: O(log n)

• Linear: O(n)

• Quadratic: O(n2)

• Polynomial: O(nk), k ≥ 1

• Exponential: O(an), a > 1

• “Relatives” of the Big-Oh
• Ω (f(n)): Big Omega-asymptotic lower bound

• Θ (f(n)): Big Theta-asymptotic tight bound

29

What does O(1) mean?

We say 𝑡(𝑛) is 𝑂(1), if there exist two positive constants 𝑛0

and 𝑐 such that, for all 𝑛 ≥ 𝑛0.

𝑡 𝑛 ≤ 𝑐

So, it means that 𝑡(𝑛) is bounded.

30

Asymptotic Notation

• The “Big-Omega” Ω−Notation
• asymptotic lower bound
• f(n) is Ω(g(n)) if there exists constants c and

n0, s.t. c g(n) ≤ f(n) for n ≥ n0

• Used to describe best-case running
times or lower bounds for algorithmic
problems
• E.g., lower-bound for searching in an

unsorted array is Ω(n)

Input Size

R
u
n
n
in

g
T
im

e f (n)

c ⋅ g(n)

n0

31

Asymptotic Notation

• The “Big-Theta” Θ−Notation

• asymptotically tight bound

• f(n) is Θ(g(n)) if there exists constants c1, c2,
and n0, s.t. c1 g(n) ≤ f(n) ≤ c2 g(n) for n ≥ n0

• f(n) is Θ(g(n)) if and only if f(n) is Ο(g(n))
 and f(n) is Ω(g(n))

• O(f(n)) is often misused instead of
Θ(f(n))

Input Size

R
u
n
n
in

g
T
im

e

n0

c2 ⋅g (n)

f (n)

c1 ⋅g (n)

32

Asymptotic Notation

Two more asymptotic notations

• "Little-oh" notation f(n) is o(g(n))
 non-tight analogue of Big-Oh

• For every c > 0, there should exist n0 , s.t.
 f(n) ≤ c g(n) for n ≥ n0

• Used for comparisons of running times

• If f(n) is o(g(n)), it is said that g(n) dominates f(n)

• "Little-omega" notation f(n) is ω(g(n))
 non-tight analogue of Big-Omega

33

Asymptotic Notation

• Analogy with real numbers

• f(n) is O(g(n)) ≅ f ≤ g

• f(n) is Ω(g(n)) ≅ f ≥ g

• f(n) is Θ(g(n)) ≅ f = g

• f(n) is o(g(n)) ≅ f < g

• f(n) is ω(g(n)) ≅ f > g

• Abuse of notation: f(n) = O(g(n)) actually means f(n) ∈O(g(n))

The big O (resp. big Ω) denotes a tight upper (resp. lower) bounds, while
the little o (resp. little 𝜔) denotes a loose upper (resp. lower) bounds.

34

Practical meaning of big O…

If the unit is in seconds, this would make ~1011 years…
35

Constant Factor Rule

36

Sum Rule

37

Product Rule

38

Transitivity Rule

39

Analyzing insertion sort

40

O(n²) sorting algorithm: Insertion Sort

T 𝑛 = 𝑛 𝑐1 + 𝑐2 + 𝑐4 + 𝑐8 − 𝑐6 − 𝑐7 + 𝑛 − 1 𝑐5

−(𝑐2 + 𝑐4 + c6 − 𝑐7 − 𝑐8)=O(n)

Best case: A is sorted, while loop does not execute.

41

O(n²) sorting algorithm: Insertion Sort

Worse case: A is reverse-ordered. The while loop execute i-1 times for each i

T 𝑛 = 𝑛 𝑐1+ 𝑐2+ 𝑐4+ 𝑐8− 𝑐6− 𝑐7 +෍
i=2

𝑛

(𝑖 − 1) 𝑐5 + 𝑐6 + 𝑐7 −(𝑐2+ 𝑐4 + c6 − 𝑐7− 𝑐8)

= 𝑛 𝑐1+ 𝑐2+ 𝑐4+ 𝑐8− 𝑐6− 𝑐7 +෍
i=2

𝑛

𝑖 − 1 𝑐5 + 𝑐6 + 𝑐7 = 𝑎𝑛 +
𝑏𝑛 𝑛 − 1

2
= 𝑂(𝑛2)

42

O(n²) sorting algorithm: Insertion Sort

Average case: The while loop is expected to execute (i-1)/2 times for each i

T 𝑛 = 𝑛 𝑐1+ 𝑐2+ 𝑐4+ 𝑐8− 𝑐6− 𝑐7 +෍
i=2

𝑛 𝑖 − 1

2
𝑐5 + 𝑐6 + 𝑐7 −(𝑐2+ 𝑐4 + c6 − 𝑐7− 𝑐8)

= 𝑛 𝑐1+ 𝑐2+ 𝑐4+ 𝑐8− 𝑐6− 𝑐7 +෍
i=2

𝑛 𝑖 − 1

2
𝑐5 + 𝑐6 + 𝑐7 = 𝑎𝑛 +

𝑏𝑛 𝑛 − 1

4
= 𝑂(𝑛2)

43

	Slide 1: Analysis of Algorithms
	Slide 2: Motivations
	Slide 3: Algorithmic Problem​
	Slide 4: Algorithmic Solution
	Slide 5: What is a Good Algorithm?
	Slide 6: What is Analysis of Algorithms
	Slide 7: Measuring the Running Time Experimentally
	Slide 8: Limitations of Experimental Studies
	Slide 9: Beyond Experimental Studies
	Slide 10: Primitive Operations
	Slide 11: More assumptions
	Slide 12: Estimating Running Time for FindMin
	Slide 13: Estimating Running Time for FindMin
	Slide 14: Insertion Sort (Recap.)
	Slide 15: Insertion Sort
	Slide 16: Best/Worst/Average Case
	Slide 17: Best/Worst/Average Case
	Slide 18: Best/Worst/Average Case
	Slide 19: Best/Worst/Average Case
	Slide 20: Asymptotic Analysis
	Slide 21: Asymptotic Analysis
	Slide 22: Asymptotic Notation
	Slide 23: Example
	Slide 24: Another Example
	Slide 25: Asymptotic Notation
	Slide 26: Asymptotic Analysis of Running Time
	Slide 27: Example of Asymptotic Analysis
	Slide 28: A Better Algorithm
	Slide 29: Asymptotic Notation (Terminology)
	Slide 30: What does O(1) mean?
	Slide 31: Asymptotic Notation
	Slide 32: Asymptotic Notation
	Slide 33: Asymptotic Notation
	Slide 34: Asymptotic Notation
	Slide 35: Practical meaning of big O…
	Slide 36: Constant Factor Rule
	Slide 37: Sum Rule
	Slide 38: Product Rule
	Slide 39: Transitivity Rule
	Slide 40: Analyzing insertion sort
	Slide 41: O(n²) sorting algorithm: Insertion Sort
	Slide 42: O(n²) sorting algorithm: Insertion Sort
	Slide 43: O(n²) sorting algorithm: Insertion Sort

