
DSAA 2043 | Design and Analysis of Algorithms

Sorting algorithms

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

➢Sorting Overview

➢Elementary Sorting Algorithms
– Insertion sort (recap.)

– Bubble sort

– Selection sort

➢Merge Sort

➢Quick Sort

The Problem of Sorting

• Input
– A sequence of n numbers < a1, a2, …, an>

• Output
– Permutation < a'1, a'2, …, a'n> such that a'1 ≤ a'2 ≤ … ≤ a'n

• Example
– Input: 8 2 4 9 3 6

– Output: 2 3 4 6 8 9

• Sorting is a fundamental operation:
– Searching (Binary Search requires sorted arrays)

– Data Processing (Efficient indexing in databases)

– Graph Algorithms (Kruskal’s algorithm for MST)

– Bioinformatics (Sorting datasets before analysis)

2

Jing Tang 3

Elementary Sorting Algorithms

Insertion Sort (Recap.)

4

Strategy
• Start “empty handed”
•Insert a card in the right

position of the already
sorted hand

• Continue until all cards are
inserted/sorted

Insertion Sort (Recap.)

5

Algorithm InsertionSort(A)
Input: An array A with n elements
Output: A sorted in non-decreasing order

1. for i ← 2 to length(A) do
2. key ← A[i] // Current element to be inserted
3. j ← i - 1 // Start comparing from the previous element
4. while j > 0 and A[j] > key do
5. A[j + 1] ← A[j] // Shift element to the right
6. j ← j - 1
7. end while
8. A[j + 1] ← key // Place key in the correct position
9. end for

10. return A // Sorted array

Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons
and swapping

6

512354277 101

Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons
and swapping

7

512354277 101Swap42 77

Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons
and swapping

8

512357742 101Swap35 77

Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons
and swapping

9

512773542 101Swap12 77

Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons
and swapping

10

577123542 101

No need to swap

Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons
and swapping

11

577123542 101 Swap5 101

Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons
and swapping

12

77123542 5 101

Largest value correctly placed

The “Bubble Up” Algorithm

13

index ← 1

last_compare_at ← n – 1

loop

 exitif(index > last_compare_at)

 if(A[index] > A[index + 1]) then

 Swap(A[index], A[index + 1])

 endif

 index ← index + 1

endloop

Items of Interest

• Notice that only the largest value is correctly placed

• All other values are still out of order

• So we need to repeat this process

14

77123542 5 101

Largest value correctly placed

Repeat “Bubble Up” How Many Times?

• If we have N elements …

• And if each time we bubble an element, we place it in its correct
location …

• Then we repeat the “bubble up” process N – 1 times

• This guarantees we’ll correctly place all N elements

15

“Bubbling” All the Elements

16

77123542 5 101

5421235 77 101

4253512 77 101

4235512 77 101

4235125 77 101

N
 -

 1

Reducing the Number of Comparisons

17

12354277 101 5

77123542 5 101

5421235 77 101

4253512 77 101

4235512 77 101

Reducing the Number of Comparisons

• On the Nth “bubble up”, we only need to
do MAX – N comparisons

For example:

• This is the 4th “bubble up”

• MAX is 6

• Thus we have 2 comparisons to do

18

4253512 77 101

Putting It All Together

19

procedure Bubblesort(A)
 to_do, index isoftype Num
 to_do ← N – 1

 loop
 exitif(to_do = 0)
 index ← 1
 loop
 exitif(index >= to_do)
 if(A[index] > A[index + 1]) then
 Swap(A[index], A[index + 1])
 endif
 index ← index + 1
 endloop
 to_do ← to_do - 1
 endloop
endprocedure # Bubblesort

In
ne

r
lo

o
p

O
u

te
r

lo
o

p

Already Sorted Collections?

• What if the collection was already sorted?

• What if only a few elements were out of place and after a couple of
“bubble ups,” the collection was sorted?

• We want to be able to detect this and “stop early”!

20

4235125 77 101

Using a Boolean “Flag”

• We can use a boolean variable to determine if any swapping
occurred during the “bubble up”

• If no swapping occurred, then we know that the collection is already
sorted!

• This boolean “flag” needs to be reset after each “bubble up”

21

Pseudo-Code

22

did_swap: Boolean
 did_swap ← true

 loop
 exitif((to_do = 0) OR NOT(did_swap))
 index ← 1
 did_swap ← false
 loop
 exitif(index >= to_do)
 if(A[index] > A[index + 1]) then
 Swap(A[index], A[index + 1])
 did_swap ← true
 endif
 index ← index + 1
 endloop
 to_do ← to_do - 1
 endloop

Selection sort

• Continuously finds the smallest element from the unsorted part and
swaps it with the first unsorted position.

23

Input: An array A of size n (1-based index)
Output: A sorted array A in non-decreasing order
Algorithm SelectionSort(A, n):
 for i ← 1 to n do
 min_index ← i
 for j ← i+1 to n do
 if A[j] < A[min_index] then
 min_index ← j
 swap A[i] and A[min_index]
 return A

Comparison of elementary sorting algorithms

24

Comparison of elementary sorting algorithms
• Number of Comparisons

– Bubble Sort: O(n²) comparisons (compares adjacent elements in every pass).

– Selection Sort: O(n²) comparisons (finds the minimum element in each pass).

– Insertion Sort: O(n²) comparisons (worst case), but O(n) for nearly sorted arrays.

• Number of Swaps
– Bubble Sort: O(n²) swaps (every adjacent swap is performed).

– Selection Sort: O(n) swaps (only one swap per pass).

– Insertion Sort: O(n) swaps (only shifts elements when needed); fewer swaps in nearly sorted cases.

• Best Case vs. Worst Case
– Bubble Sort: Best case O(n) (if already sorted, it can stop early).

– Selection Sort: Always O(n²) (even if sorted, it always scans the full array).

– Insertion Sort: Best case O(n) (if sorted, only checks each element once).

• Stability and Adaptability
– Bubble Sort and Insertion Sort are stable (maintain the order of equal elements); and adaptive (take advantage of partially

sorted data).

– Selection sort always scans the full array, and may reorder equal elements.

25

Jing Tang 26

Merge Sort

The Problem with O(n²) Sorting Algorithms

• We need a sorting method that reduces swaps and comparisons.

27

How Would You Sort 1000 Pieces of Paper?

• Method A: Uses Insertion Sort strategy (picking one paper at a time and
inserting it in order).

• Method B: Uses Merge-like strategy (first sorts small sections, then
merges them together).

– How many comparisons are needed for merging two sorted sections?

• Result: Method B finishes much faster!

• Lesson: Sorting small sections first, then merging, is faster than moving
elements one by one.

– Fewer swaps and comparisons = faster sorting!

– Merging sorted sections is easier than sorting everything from scratch.

28

Merge-Sort Example

29

1 comparison for each merge; 4 merges

3 comparisons for each merge; 2 merges

7 comparisons for each merge; 1 merge

17 comparisons

steps

Merge Sort

30

Algorithm MergeSort(A, left, right):

 Input: An array A with indices left to right
 Output: A sorted array A[left:right]

 if left < right then
 mid ← (left + right) / 2

 MergeSort(A, left, mid)

 MergeSort(A, mid + 1, right)
 Merge(A, left, mid, right)

Algorithm Merge(A, left, mid, right):

 Create two temporary arrays: Left[] and Right[]
 Copy elements from A[left:mid] into Left[]

 Copy elements from A[mid+1:right] into Right[]

 i ← 1, j ← 1, k ← left
 while i ≤ length(Left) and j ≤ length(Right) do

 if Left[i] ≤ Right[j] then

 A[k] ← Left[i]
 i ← i + 1

 else

 A[k] ← Right[j]
 j ← j + 1

 k ← k + 1

 while i ≤ length(Left) do
 A[k] ← Left[i]

 i ← i + 1

 k ← k + 1
 while j ≤ length(Right) do

 A[k] ← Right[j]

 j ← j + 1

 k ← k + 1

Merging Two Sorted Arrays (Algo. Merge)

31

20 12

13 11

7 9

2 1

1

20 12 20 12 20 12 20 12 20 12 20 12

13 11 13 11 13 11 13 11 13 11 13

7 9 7 9 7 9 9

2 1 2

122 7 9 11

An O(nlogn) sorting algorithm

32

Algorithm MergeSort(A, left, right):

 Input: An array A with indices left to right
 Output: A sorted array A[left:right]

 if left < right then
 mid ← (left + right) / 2

 MergeSort(A, left, mid)

 MergeSort(A, mid + 1, right)
 Merge(A, left, mid, right)

Analysis

• Dividing the array into two halves takes O(1).
• Recursively sorting each half takes 2T(n/2).
• Merging the two sorted halves, which takes

O(n).
• Thus, we have : T(n)=2T(n/2)+O(n)
• We have a total of logn+1 levels of merges.

Each level costs O(n). → T(n) = O(nlogn)

Sort Algorithms Performance

33

Jing Tang 34

Quick Sort

Merge Sort Weaknesses

• Requires extra space.

• Slower in practice due to copying.

→ We need in-place sorting

35

Algorithm Merge(A, left, mid, right):

 Create two temporary arrays: Left[] and Right[]
 Copy elements from A[left:mid] into Left[]

 Copy elements from A[mid+1:right] into Right[]

 i ← 1, j ← 1, k ← left
 while i ≤ length(Left) and j ≤ length(Right) do

 if Left[i] ≤ Right[j] then

 A[k] ← Left[i]
 i ← i + 1

 else

 A[k] ← Right[j]
 j ← j + 1

 k ← k + 1

 while i ≤ length(Left) do
 A[k] ← Left[i]

 i ← i + 1

 k ← k + 1
 while j ≤ length(Right) do

 A[k] ← Right[j]

 j ← j + 1

 k ← k + 1

Sorting Papers on a Table Revisits

• Imagine sorting 1000 papers on a tiny table.

• Merge Sort Approach:
• Split into smaller piles, sort them separately, then merge.

• Problem: Needs extra space for temporary piles.

• Quick Sort Approach:
• Pick a pivot (e.g., middle paper).

• Move smaller papers to the left, larger papers to the right.

• Repeat sorting within the same space.

36

Quick Sort

• A popular sorting algorithm discovered by C.A.R. Hoare in 1962
– In many situations, it’s the fastest, in 𝑂(𝑛 log 𝑛) time (for in-memory sorting)

• Basic scheme
– Partition: partition an array into two subarrays around a pivot 𝑥 such that

elements in left subarray ≤ 𝑥 ≤ the elements

– Recursion: recursively apply quicksort to each of the two subarrays

37

 x x x

Quick Sort (Pseudo-Code)

38

QUICKSORT(A, p, r)

 if p < r

 q PARTITION(A, p, r)

 QUICKSORT(A, p, q–1) //recursively sort the low side

 QUICKSORT(A, q+1, r) //recursively sort the high side

Initial call: QUICKSORT(A, 1, n)

Divide data into two groups, such that:

• All items with a value higher than a specified amount (the
pivot) are in one group

• All items with a lower value are in another

Partition

 x x x

Partitioning

• Say I have 12 values:

– 175 192 95 45 115 105 20 60 185 5 90 180

• I pick a pivot=104, and partition (NOT sorting yet):

– 95 45 20 60 5 90 | 175 192 115 105 185 180

– Note: In the future the pivot will be an actual element

– Also: Partitioning need not maintain order of elements and usually
won’t, although I did in this example

• The partition is the leftmost item in the right array:

– 95 45 20 60 5 90 | 175 192 115 105 185 180

• Which we return to designate where the division is located 39

Partitioning

• The partition process (two indexs)
– Start with two pointers: leftIndex initialized to one position to the left of the first cell;

rightIndex to one position to the right of the last cell

– leftIndex moves to the right; rightIndex moves to the left

• Stopping and Swapping
– When leftIndex encounters an item smaller than the pivot, it keeps going; when it finds a

larger item, it stops

– When rightIndex encounters an item larger than the pivot, it keeps going; when it finds a
smaller item, it stops

– When the two indexs eventually meet, the process is complete

– When the two indexs stop, swap the two elements

40

Efficiency: Partitioning

• O(n) time

– left starts at 0 and moves one-by-one to the right

– right starts at n-1 and moves one-by-one to the left

– When left and right cross, we stop.

• So we’ll hit each element just once

• Number of comparisons is n+1

• Number of swaps is worst case n/2

– Worst case, we swap every single time

– Each swap involves two elements

– Usually, it will be less than this

• Since in the random case, some elements will be on the correct side of the pivot
41

Modified Partitioning

• In preparation for Quicksort:

– Choose our pivot value to be the rightmost element

– Partition the array around the pivot

– Ensure the pivot is at the location of the partition

• Meaning, the pivot should be the leftmost element of the right subarray

• Example: Unpartitioned 42 89 63 12 94 27 78 3 50 36

• Partitioned around Pivot: 3 27 12 36 63 94 89 78 42 50

• What does this imply about the pivot element after the partition?
42

Placing the PIVOT

• Goal: Pivot must be in the leftmost position in the right subarray

– 3 27 12 36 63 94 89 78 42 50

• Our algorithm does not do this currently

• It currently will not touch the pivot

– left increments till it finds an element > pivot

– right decrements till it finds an element < pivot

– So the pivot itself won’t be touched, and will stay on the right:

– 3 27 12 63 94 89 78 42 50 36

43

Shifting the PIVOT

• We have this:

– 3 27 12 63 94 89 78 42 50 36

• Our goal is the position of 36

• Shift every element in the right subarray up (inefficient)

– 3 27 12 36 63 94 89 78 42 50

44

Swapping the PIVOT

• Just swap the leftmost with the pivot!
Better

– 3 27 12 36 94 89 78 42 50 63

– We can do this because the right subarray is
not in any particular order

• Just takes one more line to our Python
method

– Basically, a single call to swap()

– Swaps A[end-1] (the pivot) with A[left]

 (the partition index)

45

Partition

46

Algorithm Partition(A, left, right):
 Input: Array A, starting index left, ending index right
 Output: Index of the pivot after rearrangement

 pivot ← A[left] // Choose first element as pivot
 leftIndex ← left + 1
 rightIndex ← right
 while true do:
 // Move leftIndex to the right until finding an element >= pivot
 while leftIndex ≤ right and A[leftIndex] < pivot do:
 leftIndex ← leftIndex + 1
 // Move rightIndex to the left until finding an element <= pivot
 while rightIndex ≥ left and A[rightIndex] > pivot do:
 rightIndex ← rightIndex - 1
 if leftIndex ≥ rightIndex then:
 break // Indices have crossed, partitioning is complete
 swap A[leftIndex] and A[rightIndex] // Swap elements
 swap A[left] and A[rightIndex] // Move pivot to correct position
 return rightIndex // Return final position of pivot

Shall We Try It On An ARRAY?

47

1, 7, 5, 3, 6, 9, 0, 4, 8, 2

Let’s go step-by-step via Quick Sort

BEST Case…

• We partition the array each time into two equal subarrays

• Say we start with array of size n = 2𝑖

• We recurse until the base case, 1 element

• Draw the tree
– First call -> Partition n elements, n operations

– Second calls -> Each partition n/2 elements, 2(n/2)=n operations

– Third calls -> Each partition n/4, 4(n/4) = n operations

– …

– (i+1)th calls -> Each partition n/2𝑖 = 1, 2𝑖(1) = n(1) = n ops

• Total: (i+1)*n = (log n + 1)*n -> O(n log n)

48

The Very BAD Case….

• If the array is sorted

• Let’s see the problem:

– 0 10 20 30 40 50 60 70 80 90

• What happens after the partition? This:

– 0 10 20 30 40 50 60 70 80 90

• This is sorted, but the algorithm doesn’t know it.

• It will then call itself on an array of zero size (the left subarray) and an
array of n-1 size (the right subarray).

• Producing:

– 0 10 20 30 40 50 60 70 80 90

49

The Very BAD Case….

• In the worst case, we partition every time into an array of n-1
elements and an array of 0 elements

• This yields O(𝑛2) time:
– First call: Partition n elements, n operations

– Second calls: Partition n-1 and 0 elements, n-1 operations

– Third calls: Partition n-2 and 0 elements, n-2 operations

– Draw the tree

• Yielding: Operations = n + n-1 + n-2 + … + 1 = n(n+1)/2 -> O(n2)

50

Choosing Pivot

• What caused the problem was “blindly” choosing the pivot from the
right end.

• In the case of a reverse sorted array, this is not a good choice at all

• Can we improve our choice of the pivot? Let’s choose the middle of
three values

51

Median-Of-Three Partitioning

• Every time you partition, choose the median value of the left, center
and right element as the pivot

• Example:

– 44 11 55 33 77 22 00 99 101 66 88

• Pivot: Take the median of the leftmost, middle and rightmost

– 44 11 55 33 77 22 00 99 101 66 88 - Median: 44

• Then partition around this pivot:

– 11 00 33 22 44 77 55 99 101 66 88

• Increases the likelihood of an equal partition

– Also, it cannot possibly be the worst case

• 49

52

How This Fixes The WORST Case?

• Here’s our array:

– 0 10 20 30 40 50 60 70 80 90

• Let’s see on the board how this fixes things

• In fact in a perfectly sorted array, we choose the middle element as
the pivot!

– Which is optimal

– We get 𝑂(𝑁log𝑁)

• Vast majority of the time, if you use QuickSort with a Median-Of-
Three partition, you get 𝑂(𝑁log𝑁) behavior

53

One Final Optimization…

• After a certain point, just doing insertion sort is faster than
partitioning small arrays and making recursive calls

• Once you get to a very small subarray, you can just sort with insertion
sort

• You can experiment a bit with ‘cutoff’ values

– Knuth: n=9

54

Operation Count Estimates

• For QuickSort

• n=8: 30 comparisons, 12 swaps

• n=12: 50 comparisons, 21 swaps

• n=16: 72 comparisons, 32 swaps

• n=64: 396 comparisons, 192 swaps

• n=100: 678 comparisons, 332 swaps

• n=128: 910 comparisons, 448 swaps

• The only competitive algorithm is MergeSort

– But, takes much more memory like we said

55

Summary of Quicksort
• Quick sort operates in 𝑂(𝑁∗log𝑁) time (except when

the simpler version is applied to already-sorted data).

• Subarrays smaller than a certain size (the cutoff) can
be sorted by a method other than quicksort.

• The insertion sort is commonly used to sort subarrays
smaller than the cutoff.

• The insertion sort can also be applied to the entire
array, after it has been sorted down to a cutoff point
by quicksort.

56

Sort algorithm performance

57

	Slide 1: Sorting algorithms
	Slide 2: The Problem of Sorting
	Slide 3: Elementary Sorting Algorithms
	Slide 4: Insertion Sort (Recap.)
	Slide 5: Insertion Sort (Recap.)
	Slide 6: Bubble Sort: "Bubbling Up" the Largest Element
	Slide 7: Bubble Sort: "Bubbling Up" the Largest Element
	Slide 8: Bubble Sort: "Bubbling Up" the Largest Element
	Slide 9: Bubble Sort: "Bubbling Up" the Largest Element
	Slide 10: Bubble Sort: "Bubbling Up" the Largest Element
	Slide 11: Bubble Sort: "Bubbling Up" the Largest Element
	Slide 12: Bubble Sort: "Bubbling Up" the Largest Element
	Slide 13: The “Bubble Up” Algorithm
	Slide 14: Items of Interest
	Slide 15: Repeat “Bubble Up” How Many Times?
	Slide 16: “Bubbling” All the Elements
	Slide 17: Reducing the Number of Comparisons
	Slide 18: Reducing the Number of Comparisons
	Slide 19: Putting It All Together
	Slide 20: Already Sorted Collections?
	Slide 21: Using a Boolean “Flag”
	Slide 22: Pseudo-Code
	Slide 23: Selection sort
	Slide 24: Comparison of elementary sorting algorithms
	Slide 25: Comparison of elementary sorting algorithms
	Slide 26: Merge Sort
	Slide 27: The Problem with O(n²) Sorting Algorithms
	Slide 28: How Would You Sort 1000 Pieces of Paper?
	Slide 29: Merge-Sort Example
	Slide 30: Merge Sort
	Slide 31: Merging Two Sorted Arrays (Algo. Merge)
	Slide 32: An O(nlogn) sorting algorithm
	Slide 33: Sort Algorithms Performance
	Slide 34: Quick Sort
	Slide 35: Merge Sort Weaknesses
	Slide 36: Sorting Papers on a Table Revisits
	Slide 37: Quick Sort
	Slide 38: Quick Sort (Pseudo-Code)
	Slide 39: Partitioning
	Slide 40: Partitioning
	Slide 41: Efficiency: Partitioning
	Slide 42: Modified Partitioning
	Slide 43: Placing the PIVOT
	Slide 44: Shifting the PIVOT
	Slide 45: Swapping the PIVOT
	Slide 46: Partition
	Slide 47: Shall We Try It On An ARRAY?
	Slide 48: BEST Case…
	Slide 49: The Very BAD Case….
	Slide 50: The Very BAD Case….
	Slide 51: Choosing Pivot
	Slide 52: Median-Of-Three Partitioning
	Slide 53: How This Fixes The WORST Case?
	Slide 54: One Final Optimization…
	Slide 55: Operation Count Estimates
	Slide 56: Summary of Quicksort
	Slide 57: Sort algorithm performance

