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➢Sorting Overview

➢Elementary Sorting Algorithms 
– Insertion sort (recap.)

– Bubble sort

– Selection sort

➢Merge Sort

➢Quick Sort



The Problem of Sorting

• Input
– A sequence of n numbers < a1, a2, …, an>

• Output
– Permutation < a'1, a'2, …, a'n> such that a'1 ≤  a'2 ≤ … ≤ a'n

• Example
– Input:  8  2  4  9  3  6

– Output:  2  3  4  6  8  9

• Sorting is a fundamental operation:
– Searching (Binary Search requires sorted arrays)

– Data Processing (Efficient indexing in databases)

– Graph Algorithms (Kruskal’s algorithm for MST) 

– Bioinformatics (Sorting datasets before analysis)
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Elementary Sorting Algorithms



Insertion Sort (Recap.)
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Strategy
• Start “empty handed”
•Insert a card in the right 

position of the already
sorted hand

• Continue until all cards are
inserted/sorted



Insertion Sort (Recap.)
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Algorithm InsertionSort(A)
Input: An array A with n elements
Output: A sorted in non-decreasing order

1. for i ← 2 to length(A) do
2.     key ← A[i]  // Current element to be inserted
3.     j ← i - 1   // Start comparing from the previous element
4.     while j > 0 and A[j] > key do
5.         A[j + 1] ← A[j]  // Shift element to the right
6.         j ← j - 1
7.     end while
8.     A[j + 1] ← key  // Place key in the correct position
9. end for

10. return A  // Sorted array



Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons 
and swapping
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Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons 
and swapping
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Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons 
and swapping
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Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons 
and swapping
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Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons 
and swapping
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Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons 
and swapping
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Bubble Sort: "Bubbling Up" the Largest Element

• Traverse a collection of elements

• Move from the front to the end

• “Bubble” the largest value to the end using pair-wise comparisons 
and swapping
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The “Bubble Up” Algorithm
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index ← 1

last_compare_at ← n – 1

loop

  exitif(index > last_compare_at)

  if(A[index] > A[index + 1]) then

    Swap(A[index], A[index + 1])

  endif

  index ← index + 1

endloop



Items of Interest

• Notice that only the largest value is correctly placed

• All other values are still out of order

• So we need to repeat this process
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Repeat “Bubble Up” How Many Times?

• If we have N elements …

• And if each time we bubble an element, we place it in its correct 
location …

• Then we repeat the “bubble up” process N – 1 times

• This guarantees we’ll correctly place all N elements

15



“Bubbling” All the Elements
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Reducing the Number of Comparisons
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Reducing the Number of Comparisons

• On the Nth “bubble up”, we only need to 
do MAX – N comparisons

For example:

• This is the 4th “bubble up”

• MAX is 6

• Thus we have 2 comparisons to do
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Putting It All Together
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procedure Bubblesort(A)
  to_do, index isoftype Num
  to_do ← N – 1

  loop
    exitif(to_do = 0)
    index ← 1
    loop
      exitif(index >= to_do)
      if(A[index] > A[index + 1]) then
        Swap(A[index], A[index + 1])
      endif
      index ← index + 1
    endloop
    to_do ← to_do - 1
  endloop
endprocedure    # Bubblesort
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Already Sorted Collections?

• What if the collection was already sorted?

• What if only a few elements were out of place and after a couple of 
“bubble ups,” the collection was sorted?

• We want to be able to detect this and “stop early”!
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Using a Boolean “Flag”

• We can use a boolean variable to determine if any swapping 
occurred during the “bubble up”

• If no swapping occurred, then we know that the collection is already 
sorted!

• This boolean “flag” needs to be reset after each “bubble up”
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Pseudo-Code
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did_swap: Boolean
  did_swap ← true

  loop
    exitif((to_do = 0) OR NOT(did_swap))
    index ← 1
    did_swap ← false
    loop
      exitif(index >= to_do)
      if(A[index] > A[index + 1]) then
        Swap(A[index], A[index + 1])
        did_swap ← true
      endif
      index ← index + 1
    endloop
    to_do ← to_do - 1
  endloop



Selection sort

• Continuously finds the smallest element from the unsorted part and 
swaps it with the first unsorted position.
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Input: An array A of size n (1-based index)
Output: A sorted array A in non-decreasing order
Algorithm SelectionSort(A, n):
    for i ← 1 to n do
        min_index ← i
        for j ← i+1 to n do
            if A[j] < A[min_index] then
                min_index ← j
        swap A[i] and A[min_index]
    return A



Comparison of elementary sorting algorithms
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Comparison of elementary sorting algorithms
• Number of Comparisons

– Bubble Sort: O(n²) comparisons (compares adjacent elements in every pass).

– Selection Sort: O(n²) comparisons (finds the minimum element in each pass).

– Insertion Sort: O(n²) comparisons (worst case), but O(n) for nearly sorted arrays.

• Number of Swaps
– Bubble Sort: O(n²) swaps (every adjacent swap is performed).

– Selection Sort: O(n) swaps (only one swap per pass).

– Insertion Sort: O(n) swaps (only shifts elements when needed); fewer swaps in nearly sorted cases.

• Best Case vs. Worst Case
– Bubble Sort: Best case O(n) (if already sorted, it can stop early).

– Selection Sort: Always O(n²) (even if sorted, it always scans the full array).

– Insertion Sort: Best case O(n) (if sorted, only checks each element once).

• Stability and Adaptability
– Bubble Sort and Insertion Sort are stable (maintain the order of equal elements); and adaptive (take advantage of partially 

sorted data).

– Selection sort always scans the full array, and may reorder equal elements.
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Merge Sort



The Problem with O(n²) Sorting Algorithms

• We need a sorting method that reduces swaps and comparisons.
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How Would You Sort 1000 Pieces of Paper?

• Method A: Uses Insertion Sort strategy (picking one paper at a time and 
inserting it in order).

• Method B: Uses Merge-like strategy (first sorts small sections, then 
merges them together).

– How many comparisons are needed for merging two sorted sections?

• Result: Method B finishes much faster!

• Lesson: Sorting small sections first, then merging, is faster than moving 
elements one by one. 

– Fewer swaps and comparisons = faster sorting!

– Merging sorted sections is easier than sorting everything from scratch.
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Merge-Sort Example
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1 comparison for each merge; 4 merges

3 comparisons for each merge; 2 merges

7 comparisons for each merge; 1 merge

17 comparisons

steps



Merge Sort
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Algorithm MergeSort(A, left, right):

    Input: An array A with indices left to right
    Output: A sorted array A[left:right]

    if left < right then
        mid ← (left + right) / 2

        MergeSort(A, left, mid)

        MergeSort(A, mid + 1, right)
        Merge(A, left, mid, right)

Algorithm Merge(A, left, mid, right):

    Create two temporary arrays: Left[] and Right[]
    Copy elements from A[left:mid] into Left[]

    Copy elements from A[mid+1:right] into Right[]

    i ← 1, j ← 1, k ← left
    while i ≤ length(Left) and j ≤ length(Right) do

        if Left[i] ≤ Right[j] then

            A[k] ← Left[i]
            i ← i + 1

        else

            A[k] ← Right[j]
            j ← j + 1

        k ← k + 1

    while i ≤ length(Left) do
        A[k] ← Left[i]

        i ← i + 1

        k ← k + 1
    while j ≤ length(Right) do

        A[k] ← Right[j]

        j ← j + 1

        k ← k + 1



Merging Two Sorted Arrays (Algo. Merge)
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20 12

13 11

7 9

2 1

1

20 12 20 12 20 12 20 12 20 12 20 12

13 11 13 11 13 11 13 11 13 11 13

7 9 7 9 7 9 9

2 1 2

122 7 9 11



An O(nlogn) sorting algorithm
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Algorithm MergeSort(A, left, right):

    Input: An array A with indices left to right
    Output: A sorted array A[left:right]

    if left < right then
        mid ← (left + right) / 2

        MergeSort(A, left, mid)

        MergeSort(A, mid + 1, right)
        Merge(A, left, mid, right)

Analysis

• Dividing the array into two halves takes O(1).
• Recursively sorting each half takes 2T(n/2).
• Merging the two sorted halves, which takes 

O(n).
• Thus, we have : T(n)=2T(n/2)+O(n)
• We have a total of logn+1 levels of merges. 

Each level costs O(n). → T(n) = O(nlogn)



Sort Algorithms Performance
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Quick Sort



Merge Sort Weaknesses

• Requires extra space. 

• Slower in practice due to copying.

→ We need in-place sorting
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Algorithm Merge(A, left, mid, right):

    Create two temporary arrays: Left[] and Right[]
    Copy elements from A[left:mid] into Left[]

    Copy elements from A[mid+1:right] into Right[]

    i ← 1, j ← 1, k ← left
    while i ≤ length(Left) and j ≤ length(Right) do

        if Left[i] ≤ Right[j] then

            A[k] ← Left[i]
            i ← i + 1

        else

            A[k] ← Right[j]
            j ← j + 1

        k ← k + 1

    while i ≤ length(Left) do
        A[k] ← Left[i]

        i ← i + 1

        k ← k + 1
    while j ≤ length(Right) do

        A[k] ← Right[j]

        j ← j + 1

        k ← k + 1



Sorting Papers on a Table Revisits

• Imagine sorting 1000 papers on a tiny table.

• Merge Sort Approach:
• Split into smaller piles, sort them separately, then merge.

• Problem: Needs extra space for temporary piles.

• Quick Sort Approach:
• Pick a pivot (e.g., middle paper).

• Move smaller papers to the left, larger papers to the right.

• Repeat sorting within the same space.
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Quick Sort

• A popular sorting algorithm discovered by C.A.R. Hoare in 1962
– In many situations, it’s the fastest, in 𝑂(𝑛 log 𝑛) time (for in-memory sorting)

• Basic scheme
– Partition: partition an array into two subarrays around a pivot 𝑥 such that 

elements in left subarray ≤ 𝑥 ≤ the elements 

– Recursion: recursively apply quicksort to each of the two subarrays

37
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Quick Sort (Pseudo-Code)
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QUICKSORT(A, p, r)

 if p < r

  q  PARTITION(A, p, r)  

  QUICKSORT(A, p, q–1) //recursively sort the low side

  QUICKSORT(A, q+1, r) //recursively sort the high side

Initial call: QUICKSORT(A, 1, n)

Divide data into two groups, such that:

• All items with a value higher than a specified amount (the 
pivot) are in one group

• All items with a lower value are in another

Partition

 x x  x



Partitioning

• Say I have 12 values:

– 175 192 95 45 115 105 20 60 185 5 90 180

• I pick a pivot=104, and partition (NOT sorting yet):

– 95 45 20 60 5 90 | 175 192 115 105 185 180

– Note: In the future the pivot will be an actual element

– Also: Partitioning need not maintain order of elements and usually 
won’t, although I did in this example

• The partition is the leftmost item in the right array:

– 95 45 20 60 5 90 | 175 192 115 105 185 180

• Which we return to designate where the division is located 39



Partitioning

• The partition process (two indexs)
– Start with two pointers: leftIndex initialized to one position to the left of the first cell; 

rightIndex to one position to the right of the last cell

– leftIndex moves to the right; rightIndex moves to the left

• Stopping and Swapping
– When leftIndex encounters an item smaller than the pivot, it keeps going; when it finds a 

larger item, it stops

– When rightIndex encounters an item larger than the pivot, it keeps going; when it finds a 
smaller item, it stops

– When the two indexs eventually meet, the process is complete

– When the two indexs stop, swap the two elements

40



Efficiency: Partitioning

• O(n) time 

– left starts at 0 and moves one-by-one to the right

– right starts at n-1 and moves one-by-one to the left

– When left and right cross, we stop.

• So we’ll hit each element just once

• Number of comparisons is n+1

• Number of swaps is worst case n/2

– Worst case, we swap every single time

– Each swap involves two elements

– Usually, it will be less than this

• Since in the random case, some elements will be on the correct side of the pivot 
41



Modified Partitioning

• In preparation for Quicksort:

– Choose our pivot value to be the rightmost element

– Partition the array around the pivot

– Ensure the pivot is at the location of the partition

• Meaning, the pivot should be the leftmost element of the right subarray

• Example: Unpartitioned 42 89 63 12 94 27 78 3 50 36

• Partitioned around Pivot: 3 27 12 36 63 94 89 78 42 50

• What does this imply about the pivot element after the partition? 
42



Placing the PIVOT

• Goal: Pivot must be in the leftmost position in the right subarray

– 3 27 12 36 63 94 89 78 42 50

• Our algorithm does not do this currently

• It currently will not touch the pivot

– left increments till it finds an element > pivot

– right decrements till it finds an element < pivot

– So the pivot itself won’t be touched, and will stay on the right:

– 3 27 12 63 94 89 78 42 50 36 
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Shifting the PIVOT

• We have this:

– 3 27 12 63 94 89 78 42 50 36

• Our goal is the position of 36

• Shift every element in the right subarray up (inefficient)

– 3 27 12 36 63 94 89 78 42 50
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Swapping the PIVOT

• Just swap the leftmost with the pivot! 
Better 

– 3 27 12 36 94 89 78 42 50 63 

– We can do this because the right subarray is 
not in any particular order

• Just takes one more line to our Python 
method

– Basically, a single call to swap()

– Swaps A[end-1] (the pivot) with A[left] 

   (the partition index) 

45



Partition
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Algorithm Partition(A, left, right):
    Input: Array A, starting index left, ending index right
    Output: Index of the pivot after rearrangement

    pivot ← A[left]   // Choose first element as pivot
    leftIndex ← left + 1
    rightIndex ← right
    while true do:
        // Move leftIndex to the right until finding an element >= pivot
        while leftIndex ≤ right and A[leftIndex] < pivot do:
            leftIndex ← leftIndex + 1
        // Move rightIndex to the left until finding an element <= pivot
        while rightIndex ≥ left and A[rightIndex] > pivot do:
            rightIndex ← rightIndex - 1
        if leftIndex ≥ rightIndex then:
            break  // Indices have crossed, partitioning is complete
        swap A[leftIndex] and A[rightIndex]  // Swap elements
    swap A[left] and A[rightIndex]  // Move pivot to correct position
    return rightIndex  // Return final position of pivot



Shall We Try It On An ARRAY?
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1, 7, 5, 3, 6, 9, 0, 4, 8, 2

Let’s go step-by-step via Quick Sort



BEST Case…

• We partition the array each time into two equal subarrays

• Say we start with array of size n = 2𝑖

• We recurse until the base case, 1 element

• Draw the tree
– First call -> Partition n elements, n operations

– Second calls -> Each partition n/2 elements, 2(n/2)=n operations

– Third calls -> Each partition n/4, 4(n/4) = n operations

– …

– (i+1)th calls -> Each partition n/2𝑖  = 1, 2𝑖(1) = n(1) = n ops 

• Total: (i+1)*n = (log n + 1)*n -> O(n log n) 
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The Very BAD Case….

• If the array is sorted

• Let’s see the problem:

– 0 10 20 30 40 50 60 70 80 90

• What happens after the partition? This:

– 0 10 20 30 40 50 60 70 80 90

• This is sorted, but the algorithm doesn’t know it.

• It will then call itself on an array of zero size (the left subarray) and an 
array of n-1 size (the right subarray).

• Producing:

– 0 10 20 30 40 50 60 70 80 90

49



The Very BAD Case….

• In the worst case, we partition every time into an array of n-1 
elements and an array of 0 elements

• This yields O(𝑛2) time:
– First call: Partition n elements, n operations

– Second calls: Partition n-1 and 0 elements, n-1 operations

– Third calls: Partition n-2 and 0 elements, n-2 operations

– Draw the tree

• Yielding: Operations = n + n-1 + n-2 + … + 1 = n(n+1)/2 -> O(n2) 
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Choosing Pivot

• What caused the problem was “blindly” choosing the pivot from the 
right end.

• In the case of a reverse sorted array, this is not a good choice at all

• Can we improve our choice of the pivot? Let’s choose the middle of 
three values 

51



Median-Of-Three Partitioning

• Every time you partition, choose the median value of the left, center 
and right element as the pivot

• Example: 

– 44 11 55 33 77 22 00 99 101 66 88

• Pivot: Take the median of the leftmost, middle and rightmost 

– 44 11 55 33 77 22 00 99 101 66 88 - Median: 44

• Then partition around this pivot:

– 11 00 33 22 44 77 55 99 101 66 88

• Increases the likelihood of an equal partition

– Also, it cannot possibly be the worst case 

• 49 
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How This Fixes The WORST Case?

• Here’s our array:

– 0 10 20 30 40 50 60 70 80 90

• Let’s see on the board how this fixes things

• In fact in a perfectly sorted array, we choose the middle element as 
the pivot!

– Which is optimal

– We get 𝑂(𝑁log𝑁)

• Vast majority of the time, if you use QuickSort with a Median-Of-
Three partition, you get 𝑂(𝑁log𝑁) behavior 
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One Final Optimization…

• After a certain point, just doing insertion sort is faster than 
partitioning small arrays and making recursive calls

• Once you get to a very small subarray, you can just sort with insertion 
sort

• You can experiment a bit with ‘cutoff’ values

– Knuth: n=9 

54



Operation Count Estimates

• For QuickSort

• n=8: 30 comparisons, 12 swaps

• n=12: 50 comparisons, 21 swaps

• n=16: 72 comparisons, 32 swaps

• n=64: 396 comparisons, 192 swaps

• n=100: 678 comparisons, 332 swaps

• n=128: 910 comparisons, 448 swaps

• The only competitive algorithm is MergeSort

– But, takes much more memory like we said 
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Summary of Quicksort
• Quick sort operates in 𝑂(𝑁∗log𝑁) time (except when 

the simpler version is applied to already-sorted data).

• Subarrays smaller than a certain size (the cutoff) can 
be sorted by a method other than quicksort.

• The insertion sort is commonly used to sort subarrays 
smaller than the cutoff.

• The insertion sort can also be applied to the entire 
array, after it has been sorted down to a cutoff point 
by quicksort.
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Sort algorithm performance
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