DSAA 2043 | Design and Analysis of Algorithms

Sorting algorithms

Sorting Overview
 Elementary Sorting Algorithms

 Insertion sort (recap.)
 Bubble sort
 Selection sort

 Merge Sort
 Quick Sort

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

The Problem of Sorting

- Input
 - A sequence of n numbers < a1, a2, ..., an>
- Output
 - Permutation < a'1, a'2, ..., a'n > such that $a'1 \le a'2 \le ... \le a'n$
- Example
 - Input: 8 2 4 9 3 6
 - Output: 2 3 4 6 8 9
- Sorting is a fundamental operation:
 - Searching (Binary Search requires sorted arrays)
 - Data Processing (Efficient indexing in databases)
 - Graph Algorithms (Kruskal's algorithm for MST)
 - Bioinformatics (Sorting datasets before analysis)

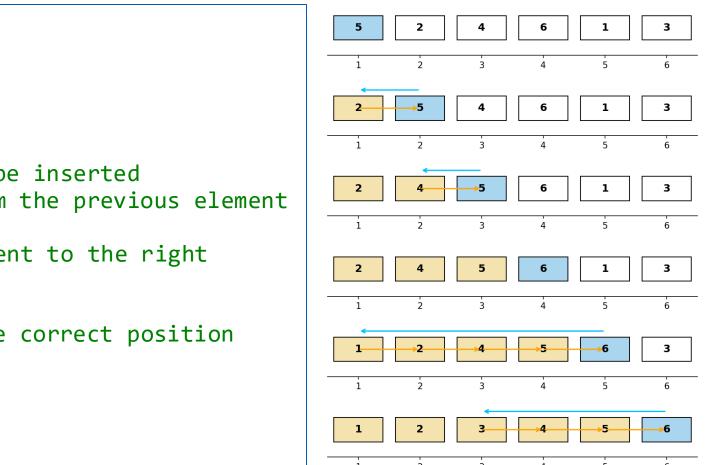
Elementary Sorting Algorithms

Insertion Sort (Recap.)

Poker-Style Insertion Sort (magic power)	Poker-Style Insertion Sort (no magic power)
Table: 5 2 4 6 1 3 Hand:	Table: 5 2 4 6 1 3 Hand:
Table: 2 4 6 1 3 Hand: 5	Table: 2 4 6 1 3 Hand: 5
Table: 4 6 1 3 Hand: 2 5 Strategy • Start "empty handed" • Insert a card in the right	Table: 4 6 1 3 Hand: 2 5
Table: 6 1 3 Hand: 2 4 5 Position of the already sorted hand • Continue until all cards are	Table: 6 1 3 Hand: 2 4 >5
Table: 3 Hand: 2 4 5 6	Table: 3 Hand: 2 4 5 6
Table: 3 Hand: 1 2 4 5 6	Table: 3 Hand: 1 2 4 5 6
Table: Hand: 1 2 3 4 5 6	Table: Hand: 1 2 3 4 5 6

Insertion Sort (Recap.)

Insertion Sort Step-by-Step



Algorithm InsertionSort(A) Input: An array A with n elements Output: A sorted in non-decreasing order

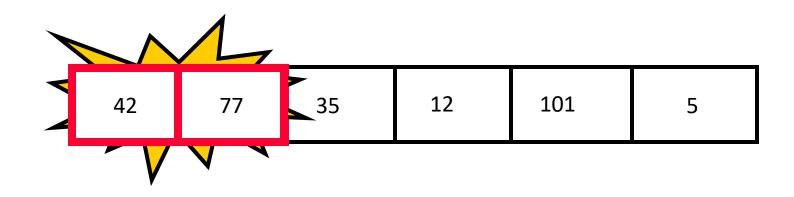
```
1. for i \leftarrow 2 to length(A) do
2.
        key \leftarrow A[i] // Current element to be inserted
3.
        j \leftarrow i - 1 // Start comparing from the previous element
       while j > 0 and A[j] > key do
4.
5.
            A[j + 1] \leftarrow A[j] // Shift element to the right
            j ← j - 1
6.
7.
        end while
        A[j + 1] \leftarrow key // Place key in the correct position
8.
9. end for
```

10. return A // Sorted array

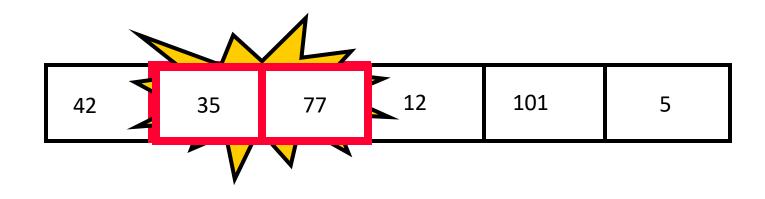
- Traverse a collection of elements
- Move from the front to the end
- "Bubble" the largest value to the end using pair-wise comparisons and swapping

77 42	35	12	101	5
-------	----	----	-----	---

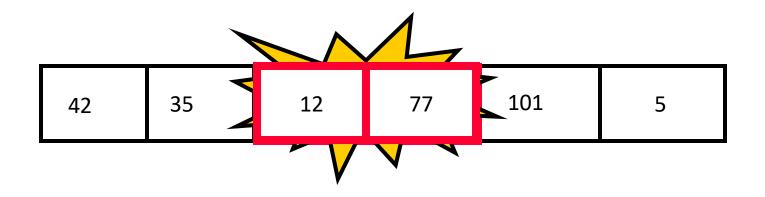
- Traverse a collection of elements
- Move from the front to the end
- "Bubble" the largest value to the end using pair-wise comparisons and swapping



- Traverse a collection of elements
- Move from the front to the end
- "Bubble" the largest value to the end using pair-wise comparisons and swapping



- Traverse a collection of elements
- Move from the front to the end
- "Bubble" the largest value to the end using pair-wise comparisons and swapping

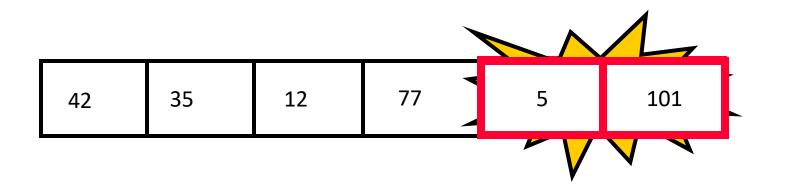


- Traverse a collection of elements
- Move from the front to the end
- "Bubble" the largest value to the end using pair-wise comparisons and swapping

42 35 12	77	101	5
----------	----	-----	---

No need to swap

- Traverse a collection of elements
- Move from the front to the end
- "Bubble" the largest value to the end using pair-wise comparisons and swapping



- Traverse a collection of elements
- Move from the front to the end
- "Bubble" the largest value to the end using pair-wise comparisons and swapping

42 35	12	77	5	101
-------	----	----	---	-----

Largest value correctly placed

loop

```
exitif(index > last_compare_at)
if(A[index] > A[index + 1]) then
Swap(A[index], A[index + 1])
endif
index ← index + 1
endloop
```

Items of Interest



- Notice that only the largest value is correctly placed
- All other values are still out of order
- So we need to repeat this process

42 35 12	77	5	101	
----------	----	---	-----	--

Largest value correctly placed

Repeat "Bubble Up" How Many Times?

- If we have N elements ...
- And if each time we bubble an element, we place it in its correct location ...
- Then we repeat the "bubble up" process N 1 times
- This guarantees we'll correctly place all N elements

	$\left(\right)$	42	35	12	77	5	101
		35	12	42	5	77	101
N - 1		12	35	5	42	77	101
Z							
		12	5	35	42	77	101
		5	12	35	42	77	101

Reducing the Number of Comparisons

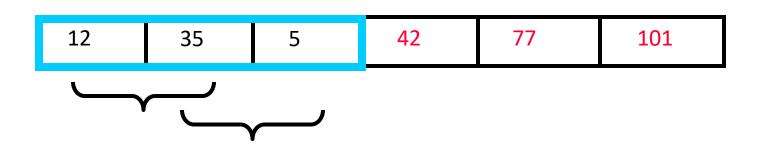
77	42	35	12	101	5
42	35	12	77	5	101
35	12	42	5	77	101
12	35	5	42	77	101
12	5	35	42	77	101

Reducing the Number of Comparisons

 On the Nth "bubble up", we only need to do MAX – N comparisons

For example:

- This is the 4th "bubble up"
- MAX is 6
- Thus we have 2 comparisons to do

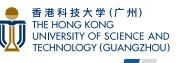


Putting It All Together

```
procedure Bubblesort(A)
  to_do, index isoftype Num
  to do \leftarrow N - 1
  loop
    exitif(to_do = 0)
    index \leftarrow 1
    loop
      exitif(index >= to_do)
       if(A[index] > A[index + 1]) then
         Swap(A[index], A[index + 1])
      endif
      index \leftarrow index + 1
    endloop
    to_do ← to_do - 1
  endloop
endprocedure
                                     # Bubblesort
```

```
Inner loop
```

Duter loop



Already Sorted Collections?

- What if the collection was already sorted?
- What if only a few elements were out of place and after a couple of "bubble ups," the collection was sorted?
- We want to be able to detect this and "stop early"!

5 12 35	42	77	101
---------	----	----	-----

- We can use a boolean variable to determine if any swapping occurred during the "bubble up"
- If no swapping occurred, then we know that the collection is already sorted!
- This boolean "flag" needs to be reset after each "bubble up"

Pseudo-Code


```
did_swap: Boolean
did_swap ← true
```

```
loop
  exitif((to_do = 0) OR NOT(did_swap))
  index \leftarrow 1
  did_swap ← false
  loop
    exitif(index >= to_do)
    if(A[index] > A[index + 1]) then
      Swap(A[index], A[index + 1])
      did_swap ← true
    endif
    index \leftarrow index + 1
  endloop
  to_do ← to_do - 1
endloop
```

Selection sort

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

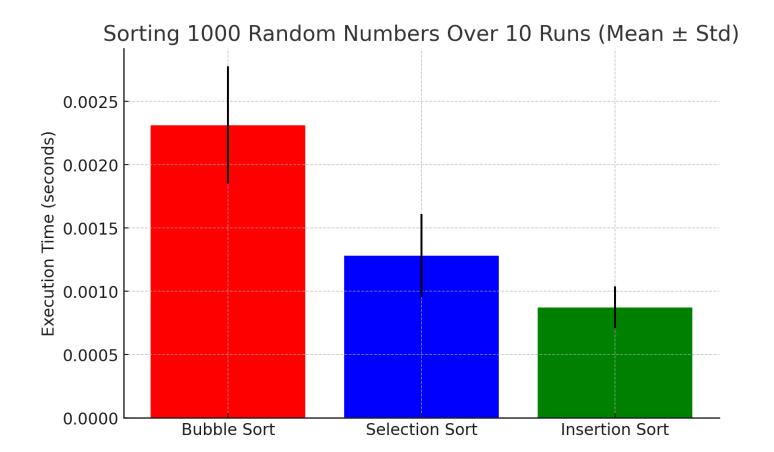
• Continuously finds the smallest element from the unsorted part and swaps it with the first unsorted position.

```
Input: An array A of size n (1-based index)
Output: A sorted array A in non-decreasing order
Algorithm SelectionSort(A, n):
   for i ← 1 to n do
        min_index ← i
        for j ← i+1 to n do
            if A[j] < A[min_index] then
                min_index ← j
        swap A[i] and A[min_index]</pre>
```

return A

Pass	Unsorted Part	Min Element	Swap	Updated Array
1	[6, 3, 8, 5, 2]	2 (at index 5)	Swap A[1] + A[5]	[2, 3, 8, 5, 6]
2	[3, 8, 5, 6]	3 (at index 2)	No swap needed	[2, 3, 8, 5, 6]
3	[8, 5, 6]	5 (at index 4)	Swap A[3] ↔ A[4]	[2, 3, 5, 8, 6]
4	[8, 6]	6 (at index 5)	Swap A[4] ↔ A[5]	[2, 3, 5, 6, 8]
5	[8]	No need to swap	Done	[2, 3, 5, 6, 8]

Comparison of elementary sorting algorithms



Comparison of elementary sorting algorithms

• Number of Comparisons

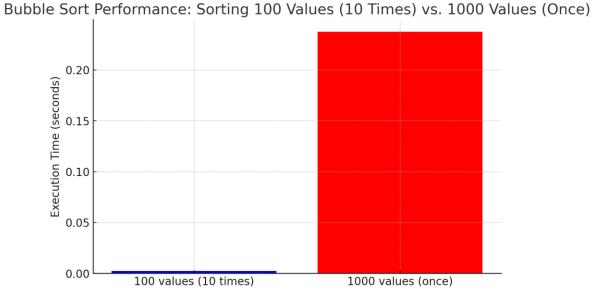
- Bubble Sort: O(n²) comparisons (compares adjacent elements in every pass).
- Selection Sort: O(n²) comparisons (finds the minimum element in each pass).
- Insertion Sort: O(n²) comparisons (worst case), but O(n) for nearly sorted arrays.
- Number of Swaps
 - Bubble Sort: O(n²) swaps (every adjacent swap is performed).
 - Selection Sort: O(n) swaps (only one swap per pass).
 - Insertion Sort: O(n) swaps (only shifts elements when needed); fewer swaps in nearly sorted cases.
- Best Case vs. Worst Case
 - Bubble Sort: Best case O(n) (if already sorted, it can stop early).
 - Selection Sort: Always O(n²) (even if sorted, it always scans the full array).
 - Insertion Sort: Best case O(n) (if sorted, only checks each element once).
- Stability and Adaptability
 - Bubble Sort and Insertion Sort are stable (maintain the order of equal elements); and adaptive (take advantage of partially sorted data).
 - Selection sort always scans the full array, and may reorder equal elements.

Merge Sort

The Problem with O(n²) Sorting Algorithms

Algorithm	Comparisons (Worst Case)	Swaps (Worst Case)
Bubble Sort	O(n²)	O(n²)
Selection Sort	O(n²)	O(n)
Insertion Sort	O(n²)	O(n)

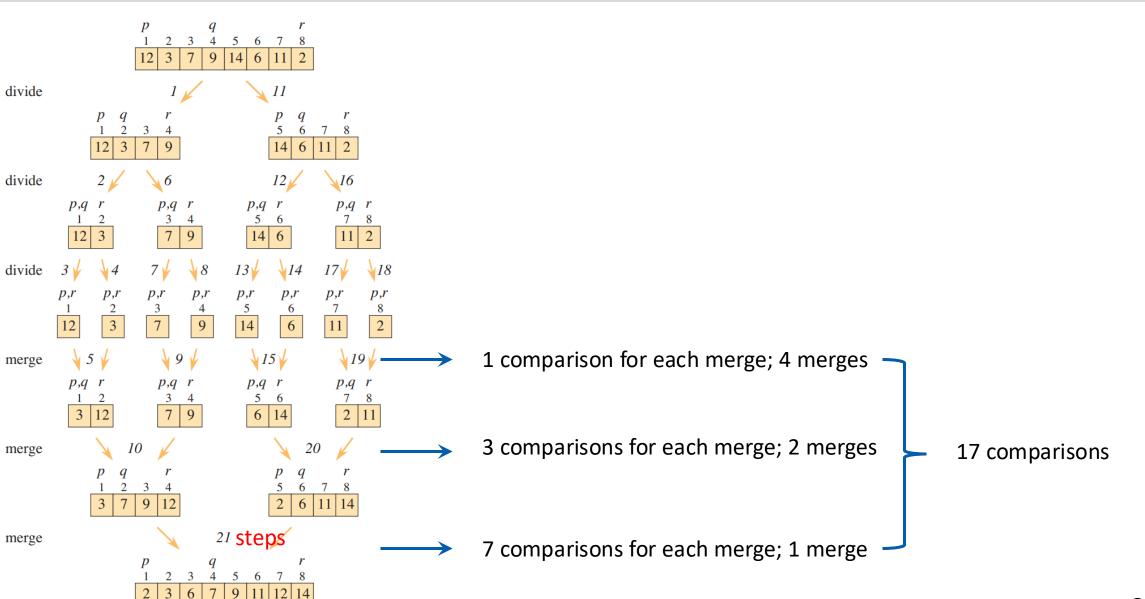
• We need a sorting method that reduces swaps and comparisons.



How Would You Sort 1000 Pieces of Paper?

- 香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)
- Method A: Uses Insertion Sort strategy (picking one paper at a time and inserting it in order).
- Method B: Uses Merge-like strategy (first sorts small sections, then merges them together).
 - How many comparisons are needed for merging two sorted sections?
- Result: Method B finishes much faster!
- Lesson: Sorting small sections first, then merging, is faster than moving elements one by one.
 - Fewer swaps and comparisons = faster sorting!
 - Merging sorted sections is easier than sorting everything from scratch.

Merge-Sort Example



港科技大学(广州)

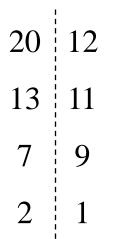
THE HONG KONG JNIVERSITY OF SCIENCE AND FECHNOLOGY (GUANGZHOU) **Merge Sort**


```
Algorithm MergeSort(A, left, right):
    Input: An array A with indices left to right
    Output: A sorted array A[left:right]
```

```
if left < right then
  mid ← (left + right) / 2
  MergeSort(A, left, mid)
  MergeSort(A, mid + 1, right)
  Merge(A, left, mid, right)
```

```
Algorithm Merge(A, left, mid, right):
    Create two temporary arrays: Left[] and Right[]
    Copy elements from A[left:mid] into Left[]
    Copy elements from A[mid+1:right] into Right[]
    i \leftarrow 1, j \leftarrow 1, k \leftarrow left
    while i ≤ length(Left) and j ≤ length(Right) do
         if Left[i] ≤ Right[j] then
              A[k] \leftarrow Left[i]
              i ← i + 1
         else
              A[k] \leftarrow Right[j]
              i ← i + 1
         k \leftarrow k + 1
    while i ≤ length(Left) do
         A[k] \leftarrow Left[i]
         i ← i + 1
         k \leftarrow k + 1
    while j ≤ length(Right) do
         A[k] \leftarrow Right[j]
         j ← j + 1
         k \leftarrow k + 1
```

Merging Two Sorted Arrays (Algo. Merge)



香港科技大学(广州)

UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

THE HONG KONG

An O(nlogn) sorting algorithm



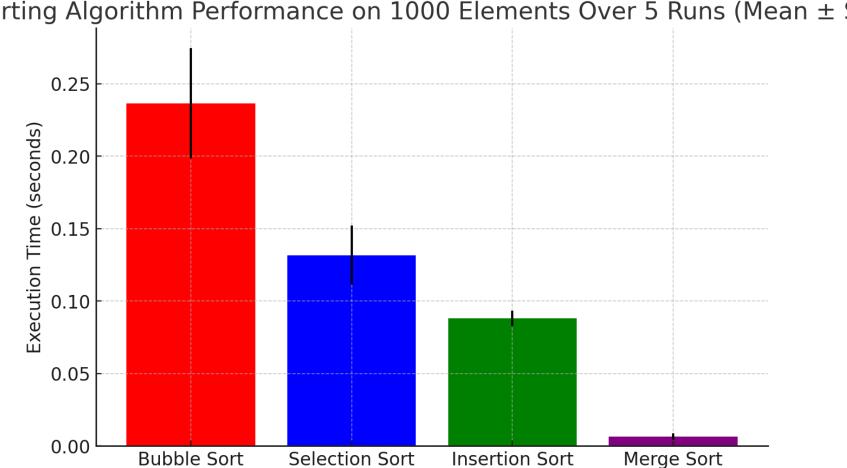
```
if left < right then
  mid ← (left + right) / 2
  MergeSort(A, left, mid)
  MergeSort(A, mid + 1, right)
  Merge(A, left, mid, right)
```

Analysis

- Dividing the array into two halves takes O(1).
- Recursively sorting each half takes 2T(n/2).
- Merging the two sorted halves, which takes O(n).
- Thus, we have : T(n)=2T(n/2)+O(n)
- We have a total of logn+1 levels of merges.
 Each level costs O(n). → T(n) = O(nlogn)



Sort Algorithms Performance



Sorting Algorithm Performance on 1000 Elements Over 5 Runs (Mean ± Std)

Quick Sort

Merge Sort Weaknesses

- Requires extra space.
- Slower in practice due to copying.
- \rightarrow We need in-place sorting

```
Algorithm Merge(A, left, mid, right):
     Create two temporary arrays: Left[] and Right[]
     Copy elements from A[left:mid] into Left[]
     Copy elements from A[mid+1:right] into Right[]
     i \leftarrow 1, j \leftarrow 1, k \leftarrow left
     while i \leq length(Left) and j \leq length(Right) do
          if Left[i] ≤ Right[j] then
               A[k] \leftarrow Left[i]
               i \leftarrow i + 1
          else
               A[k] \leftarrow Right[j]
               i \leftarrow i + 1
          k \leftarrow k + 1
     while i \leq length(Left) do
          A[k] \leftarrow Left[i]
          i \leftarrow i + 1
          k \leftarrow k + 1
     while j \leq \text{length}(\text{Right}) do
          A[k] \leftarrow Right[j]
          j ← j + 1
          k \leftarrow k + 1
```

Sorting Papers on a Table Revisits

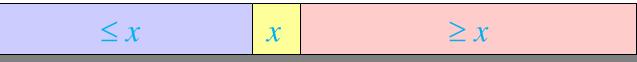
香港科技大学(厂州) THE HONG KONG UNIVERSITY OF SCIENCE AI TECHNOLOGY (GUANGZHO

- Imagine sorting 1000 papers on a tiny table.
- Merge Sort Approach:
 - Split into smaller piles, sort them separately, then merge.
 - Problem: Needs extra space for temporary piles.
- Quick Sort Approach:
 - Pick a pivot (e.g., middle paper).
 - Move smaller papers to the left, larger papers to the right.
 - Repeat sorting within the same space.

- A popular sorting algorithm discovered by C.A.R. Hoare in 1962
 In many situations, it's the fastest, in O(n log n) time (for in-memory sorting)
- Basic scheme

Quick Sort

- Partition: partition an array into two subarrays around a pivot x such that elements in left subarray $\leq x \leq$ the elements



- Recursion: recursively apply quicksort to each of the two subarrays

Quick Sort (Pseudo-Code)

QUICKSORT(A, p, r) if p < r $q \leftarrow PARTITION(A, p, r)$ QUICKSORT(A, p, q-1) //recursively sort the low side QUICKSORT(A, q+1, r) //recursively sort the high side Initial call: QUICKSORT(A, 1, n)

Partition

Divide data into two groups, such that:

- All items with a value higher than a specified amount (the pivot) are in one group
- All items with a lower value are in another

- Say I have 12 values:
 - $-\,175\,\,192\,\,95\,\,45\,\,115\,\,105\,\,20\,\,60\,\,185\,\,5\,\,90\,\,180$
- I pick a pivot=104, and partition (NOT sorting yet):

-95 45 20 60 5 90 | 175 192 115 105 185 180

- -Note: In the future the pivot will be an actual element
- Also: Partitioning need not maintain order of elements and usually won't, although I did in this example
- The partition is the leftmost item in the right array:

-95 45 20 60 5 90 | 175 192 115 105 185 180

• Which we return to designate where the division is located

Partitioning

- The partition process (two indexs)
 - Start with two pointers: *leftIndex* initialized to one position to the left of the first cell; *rightIndex* to one position to the right of the last cell
 - *leftIndex* moves to the right; *rightIndex* moves to the left
- Stopping and Swapping
 - When *leftIndex* encounters an item smaller than the pivot, it keeps going; when it finds a larger item, it stops
 - When *rightIndex* encounters an item larger than the pivot, it keeps going; when it finds a smaller item, it stops
 - When the two *indexs* eventually meet, the process is complete
 - When the two *indexs* stop, swap the two elements

Efficiency: Partitioning

- O(n) time
 - left starts at 0 and moves one-by-one to the right
 - right starts at n-1 and moves one-by-one to the left
 - When left and right cross, we stop.
 - So we'll hit each element just once
- Number of comparisons is n+1
- Number of swaps is worst case n/2
 - Worst case, we swap every single time
 - Each swap involves two elements
 - Usually, it will be less than this
 - Since in the random case, some elements will be on the correct side of the pivot

- In preparation for Quicksort:
 - Choose our pivot value to be the rightmost element
 - Partition the array around the pivot
 - Ensure the pivot is at the location of the partition
 - Meaning, the pivot should be the leftmost element of the right subarray
- Example: Unpartitioned **42 89 63 12 94 27 78 3 50 36**
- Partitioned around Pivot: **3 27 12 36 63 94 89 78 42 50**
- What does this imply about the pivot element after the partition?

Placing the PIVOT

• Goal: Pivot must be in the leftmost position in the right subarray

-3 27 12 36 63 94 89 78 42 50

- Our algorithm does not do this currently
- It currently will not touch the pivot
 - left increments till it finds an element > pivot
 - right decrements till it finds an element < pivot</p>
 - So the pivot itself won't be touched, and will stay on the right:
 - -3 27 12 63 94 89 78 42 50 36

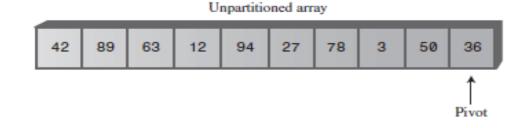
THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

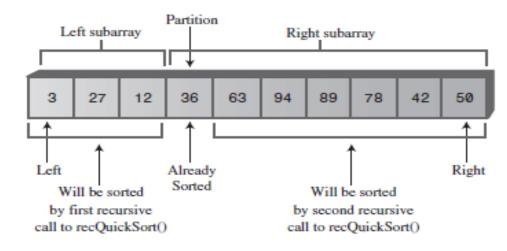
港 科 技 大 学 (广 州)

• We have this:

- 3 27 12 63 94 89 78 42 50 36

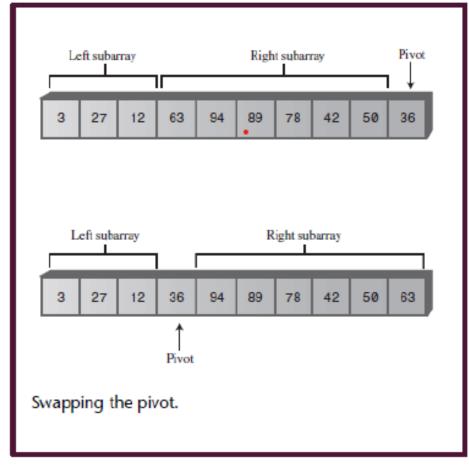
- Our goal is the position of 36
- Shift every element in the right suba
 3 27 12 36 63 94 89 78 42 50





Recursive calls sort subarrays.

Swapping the PIVOT



- Just swap the leftmost with the pivot! Better
 - **3 27 12 36 94 89 78 42 50 63**
 - We can do this because the right subarray is not in any particular order
- Just takes one more line to our Python method
 - Basically, a single call to swap()
 - Swaps A[end-1] (the pivot) with A[left]

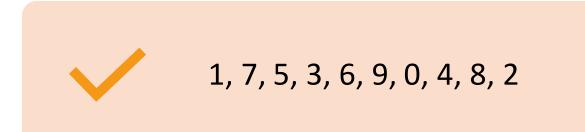
(the partition index)

Partition

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

```
Algorithm Partition(A, left, right):
    Input: Array A, starting index left, ending index right
    Output: Index of the pivot after rearrangement
    pivot ← A[left] // Choose first element as pivot
    leftIndex \leftarrow left + 1
    rightIndex ← right
    while true do:
        // Move leftIndex to the right until finding an element >= pivot
        while leftIndex ≤ right and A[leftIndex] < pivot do:
            leftIndex \leftarrow leftIndex + 1
        // Move rightIndex to the left until finding an element <= pivot</pre>
        while rightIndex ≥ left and A[rightIndex] > pivot do:
            rightIndex ← rightIndex - 1
        if leftIndex ≥ rightIndex then:
            break // Indices have crossed, partitioning is complete
        swap A[leftIndex] and A[rightIndex] // Swap elements
    swap A[left] and A[rightIndex] // Move pivot to correct position
    return rightIndex // Return final position of pivot
```

Shall We Try It On An ARRAY?



Let's go step-by-step via Quick Sort

大学(广州)

OF SCIENCE AND GY (GUANGZHOU)

- We partition the array each time into two equal subarrays
- Say we start with array of size $n = 2^i$
- We recurse until the base case, 1 element
- Draw the tree
 - First call -> Partition n elements, n operations
 - Second calls -> Each partition n/2 elements, 2(n/2)=n operations
 - Third calls -> Each partition n/4, 4(n/4) = n operations
 - ...

- (i+1)th calls -> Each partition $n/2^i = 1$, $2^i(1) = n(1) = n$ ops

• Total: (i+1)*n = (log n + 1)*n -> O(n log n)

The Very BAD Case....

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU

- If the array is sorted
- Let's see the problem:

-0 10 20 30 40 50 60 70 80 90

- What happens after the partition? This:
 -0 10 20 30 40 50 60 70 80 90
- This is sorted, but the algorithm doesn't know it.
- It will then call itself on an array of zero size (the left subarray) and an array of n-1 size (the right subarray).
- Producing:

-0 10 20 30 40 50 60 70 <mark>80</mark> 90

The Very BAD Case....

- In the worst case, we partition every time into an array of n-1 elements and an array of 0 elements
- This yields $O(n^2)$ time:
 - First call: Partition n elements, n operations
 - Second calls: Partition n-1 and 0 elements, n-1 operations
 - Third calls: Partition n-2 and 0 elements, n-2 operations
 - Draw the tree
- Yielding: Operations = $n + n 1 + n 2 + ... + 1 = n(n+1)/2 -> O(n^2)$

Choosing Pivot

- What caused the problem was "blindly" choosing the pivot from the right end.
- In the case of a reverse sorted array, this is not a good choice at all
- Can we improve our choice of the pivot? Let's choose the middle of three values

Median-Of-Three Partitioning

- Every time you partition, choose the median value of the left, center and right element as the pivot
- Example:

-44 11 55 33 77 22 00 99 101 66 88

- Pivot: Take the median of the leftmost, middle and rightmost
 -44 11 55 33 77 22 00 99 101 66 88 Median: 44
- Then partition around this pivot:

-11 00 33 22 44 77 55 99 101 66 88

• Increases the likelihood of an equal partition

-Also, it cannot possibly be the worst case

How This Fixes The WORST Case?

$- 0 \ 10 \ 20 \ 30 \ 40 \ 50 \ 60 \ 70 \ 80 \ 90$

- Let's see on the board how this fixes things
- In fact in a perfectly sorted array, we choose the middle element as the pivot!
 - Which is optimal
 - -We get $O(N \log N)$
- Vast majority of the time, if you use QuickSort with a Median-Of-Three partition, you get $O(N \log N)$ behavior

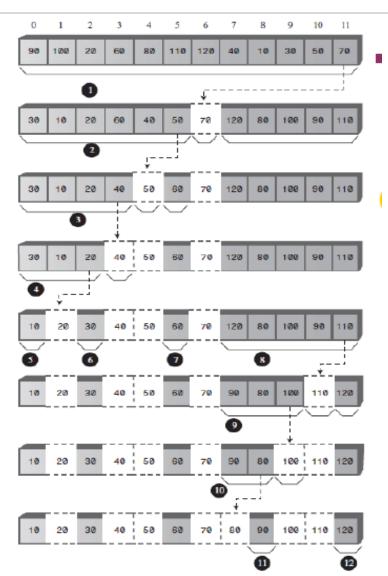
- After a certain point, just doing insertion sort is faster than partitioning small arrays and making recursive calls
- Once you get to a very small subarray, you can just sort with insertion sort
- You can experiment a bit with 'cutoff' values
 - Knuth: n=9

Operation Count Estimates

- For QuickSort
- n=8: 30 comparisons, 12 swaps
- n=12: 50 comparisons, 21 swaps
- n=16: 72 comparisons, 32 swaps
- n=64: 396 comparisons, 192 swaps
- n=100: 678 comparisons, 332 swaps
- n=128: 910 comparisons, 448 swaps
- The only competitive algorithm is MergeSort

 But, takes much more memory like we said

Summary of Quicksort



The quicksort process.

- Quick sort operates in O(N*logN) time (except when the simpler version is applied to already-sorted data).
- Subarrays smaller than a certain size (the cutoff) can be sorted by a method other than quicksort.
- The insertion sort is commonly used to sort subarrays smaller than the cutoff.
- The insertion sort can also be applied to the entire array, after it has been sorted down to a cutoff point by quicksort.

Swaps and Comparisons in Quicksort						
N	8	12	16	64	100	128
log _z N	3	3.59	4	6	6.65	7
N*log ₂ N	24	43	64	384	665	896
Comparisons: (N+2)*log ₂ N	30	50	72	396	678	910
Swaps: fewer than N/2*log ₂ N	12	21	32	192	332	448

*The log₂ *N* quantity used in the table is true only in the best-case scenario, where each subarray is partitioned exactly in half. For random data, it is slightly greater.

Sort algorithm performance

