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Binary Search Tree
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Sorted Array:

12fs]afs]efr]e

Linked list (not necessarily sorted):
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* O(n) INSERT/DELETE:

—First, find the relevant element (we’ll see how below), and then
move a bunch elements in the array:

£ E1 E1 K1 R KD

* O(log(n)) SEARCH (if sorted):

1j2)3]4a]s]7]s
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* 0(1) INSERT (manipulating pointers)

eg, search for 3 (and then you could delete it by manipulating pointers).
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Arrays Linked Lists (Balanced)
Binary Search
Trees
Search 0(n) 0(n) O (logn)
(O(logn) if sorted)
Delete 0(n) 0(n) O(logn)
Insert O(n) 0(1) O(logn)



- Binary Tree Terminology W s

Each node has two children

This node is

the root \ .
5

is a descendant of is an ancestor of

Both children of are NIL (usually not drawn)
These nodes

The height of this tree is 3 are leaves




' Binary Search Tree

* A BST is a binary tree such that:
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— Every LEFT descendant of a node has key less than that node.

— Every RIGHT descendant of a node has key larger than that node



' Binary Search Tree

 ABST is a binary tree so that:
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— Every LEFT descendant of a node has key less than that node.

— Every RIGHT descendant of a node has key larger than that node.
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' Binary Search Tree

 ABST is a binary tree so that:

!
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— Every LEFT descendant of a node has key less than that node.

A

— Every RIGHT descendant of a node has key larger than that node.

10
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 ABST is a binary tree so that:
— Every LEFT descendant of a node has key less than that node.
— Every RIGHT descendant of a node has key larger than that node.
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 ABST is a binary tree so that:
— Every LEFT descendant of a node has key less than that node.

— Every RIGHT descendant of a node has key larger than that node.

Q: Is this the only
binary search tree |
could possibly build

with these values?

12
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* OQutput all the elements in sorted order!

* inOrderTraversal(x):
— if x!= NIL:
* inOrderTraversal( x.left )
e print( x.key )
* inOrderTraversal( x.right )

2 3457

Sorted!

Pre-order / post-order traversal?

13



' Search

EXAMPLE: Search for 4.
EXAMPLE: Search for 4.5

Sometimes, it will be convenient
to return 4 in this case

(that is, return the last node
before we went off the tree)

Semantics:

* find the largest element in the
collection that is no larger than the

search key
Largest predecessor query

=

W]

EBREARE (M)

THE HONG KONG
UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
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EXAMPLE: Insert 4.5

* INSERT(key):
e x=SEARCH(key)
* Insert a new node with
desired key at x...

15



' Insert
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EXAMPLE: Insert 4.5

* INSERT(key):
* x =SEARCH(key)
* if key > x.key:
* Make a new node with the
correct key, and put it as the
right child of x
* if key < x.key:
* Make a new node with the

correct key, and put it as the
left child of x
* if x.key == key:
* return

16
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* DELETE(key):
* x=SEARCH(key)
* if x.key == key:
* ...deletex....

This is a bit more complicated...

17
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5] > [5]

Case 1: if 3is a leaf,
just delete it.

This triangle
is a cartoon
for a subtree

Case 2: if 3 has just one child,
move that up.

18
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Case 3: if 3 has two children,

replace 3 with it’s immediate successor.

(aka, next biggest element after 3) property?
* Yes

e How do we find the
immediate successor?

 SEARCH for 3 in the subtree
under 3.right

* How do we remove it when
we find it?
* If[3.1] has O or 1 children,
do one of the previous cases

* What if [3.1] has two
children?

 Jtdoesn’t

19

* Does this maintain the BST




' More Operations W _

* findmin(x): finds the minimum of the tree rooted at x
e findmax(x): finds the max of the tree rooted at x
e deletemin(): finds the minimum of the tree and delete it

Time complexities of them?

20



- The Importance of Being Balanced W i

* This is a valid binary search tree

* The version with n nodes has
depth n, not ©(log(n))

21



- Balanced BST Strategy W B i

* Augment every node with some property

* Define a local invariant on property

 Show (prove) that invariant guarantees O(logn) height

* Design algorithms to maintain property and the invariant

22
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AVL Trees

23
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An AVL (Adelson-Velskii and Landis) tree is a binary search tree that also meets
the following rule

AVL condition: For every node, the height of its left subtree and right

subtree differ by at most 1.

Height of a tree:
Maximum number of edges on a path from the root to a leaf.

A tree with one node has height 0.
A null tree (no nodes) has height -1.

24
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Which one(s) is balanced according to AVL’s definition?

25
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An AVL tree is a binary search tree that also meets the following rule

AVL condition: For every node, the height of its left subtree

and right subtree differ by at most 1.

This will avoid the ®(n) behavior! We have to check:
1. We must be able to maintain this property when inserting/deleting.
2. Such a tree must have height ©(logn).

26
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* Let n(h) be the minimum number of nodes in an AVL tree of height h.

* If we can say n(h) is big, we’ll be able to say that a tree with n nodes
has a small height.

* So..what’sn(h)?

1, ifh=0
*n(h) =42, ifh =1
(n(h—1) +n(h —2) + 1, otherwise

27
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Hey! That’s a recurrence!

Recurrences can describe any kind of function, not just running time of code!
1, ifh=20

n(h) =X 2, ifh=1
nth—1)+n(h—2)+1, otherwise

We could use tree method, but it’s a little...weird.

It’ll be easier if we change things just a bit:
1, ifh=20
n(h) =42, ifh =1
nth—2)+n(h—2)+1, otherwise

28
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nthy=nth—-1)+nth—-2)+1
> 2n(h — 2)

> 2x2n(h — 4)
h
> 22
h < 2logn(h)

Hence, h = O(logn).

29



B FEHBERE (M)
I 1 l JJ Lﬁl\?EoR;(TSY%OFNs%ENCE AND
n S e rt I 0 n Ll TECHNOLOGY (GUANGZHOU)
-~

What happens if when the AVL condition is violated after insertion?

Insert 3
>

Balanced Imbalanced

30
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Rotations!

RiGHT-ROTATE(B) °

Q LerT-RoTATE(A) @
£ A 4 AA

Rotations can reduce the height!

®% LerT-RoTaTE(1)

31
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Insertion / Deletion

* Insert new node u as in the simple BST
* Can create imbalance

* Work your way up the tree, restoring h-1 h-2
the balance

e Similar issue/solution when deleting a
node h+1

32
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The right child of x
has +2 height than

* Let x be the lowest “violating” node the left child of x & fi5lfion
* we will try to correct that and move up ~-~._no violation
the tree k-1 o =l

« Assume that x is “right-heavy”
* we analyze more the right subtree of x "

. : . X is “right-heavy”

* y is the right child of x

* Scenarios

e Case 1:y is right-heavy / balanced

e Case 2:y is left-heavy

33



- Balancing

Case 1.1: yis right-heavy

34



- Balancing ) _
Case 1.2: vy is balanced

’ LEFT-ROTATE(X)\

1 Q k+1 ’

Same as Case 1.1

35
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Still not
balanced

Case 2:vy is left-heavy

Q LEFT-ROTATE(X)
k-1 Q crl

k-1

k-1

36
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Case 2:vy is left-heavy

z is right-heav
° k+1 5 Y

RIGHT-ROTATE (V)

37
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Case 2:vy is left-heavy

z is right-heav
Q k+1 & Y

k

38
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Case 2: v is left-heavy (final solution)

RIGHT-ROTATE (V)
LEFT-ROTATE(X)

39



' Four Types of Rotations W i

To summarize

insert location __[Solution ___________

Left subtree of left Single right rotation
child (A)

Right subtree of Double (left-right) rotation
left child (B)

Left subtree of Double (right-left) rotation
right child (C)

Right subtree of Single left rotation
right child (D)

40



- Other Self-Balancing Trees W& _

* “Red-black trees” work on a similar principle to AVL trees.

* “Splay trees”: Get O(logn) amortized bounds for all operations.

* “Scapegoat trees”: worst case 0 (logn) search complexity. Others are
same as splay trees.

* “Treaps” —a BST and heap in one (!)

Similar tradeoffs to AVL trees.

41
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Red-Black Trees

42
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* AVL trees requires more rotations during insertion/deletion due to
relatively strict balancing.

* What if we relax the constraint a bit and use some proxy of balancing?

/
2B ™

black nodes

red nodes.

43
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* Every node is colored red or black.

* The root node is a black node.

* NIL children count as black nodes.

* Children of a red node are black nodes.

* For all nodes x:

—all paths from x to NIL's have the same
number of black nodes on them.

44



Red-Black Trees W B

* Node color: Every node is colored red or black.

Which of these
are red-black trees?
(NIL nodes not drawn)

Root node is black: The root node is a black node.

Leaves (NIL) are black: NIL children count as black nodes.

No double red: Both children of a red node are black nodes.

1 minute think
Black-height consistency: For all nodes x: 1 minute share

— all paths from x to NILs have the same number of black nodes on them.

No! NoO!

45



- Why These Rules? W _

* This is pretty balanced.
—The black nodes are balanced
—The red nodes don’t mess things up too much.

* We can maintain this property as we insert/delete nodes, by
using rotations or color flipping.

46
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One path can be at most
twice as long as another if
we pad it with red nodes.

* This is “pretty balanced”.

* Conjecture:
—the height of a red-black tree with n nodes is at most 2 log(n)

47
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The height of a RB-tree with n non-NIL nodes is at most
2log,(n + 1).

* Prove it?

48



B FEHBERE (M)
I D I l JJ Lﬁl\?EoR;(TSY%OFNs%ENCE AND
n S e rt e Ete LA TECHNOLOGY (GUANGZHOU)
-~

* Since the insertion and deletion in RB Trees are complicated,
you don’t need to master the details of them.

—You should know what the “proxy for balance” property is and why
it ensures approximate balance.

—You should know that this property can be efficiently maintained,
but you do not need to know the details of how.

49
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Many cases

AL ALAL

* Suppose we want to insert O

* 3 “important” cases for different colorings of the existing tree, and
there are 9 more cases for all of the various symmetries of these 3
cases.

50
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* Make a new red node.
* Insert it as you would normally.

51
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* Make a new red node.
* Insert it as you would normally?
* Fix things up if needed.

NO! What if it looks like this?

52
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nsert: Case 2

 Make a new red node.

* Insert it as you would normally?
* Fix things up if needed.

=

W

UNIVERSITY OF SCIENCE AND

THE HONG KONG
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BEBRBEKE (M)

Can’t we just insert
0 as a black node?

What if it looks like this?
NO!

One more black

node in this path!

53
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* An important observation: The root can be switched from red to black

without violating any rule.
Flip
colors!

e Add 0 as a red node.

* Flip the colors of its parent and uncle.

{° Pass the red to the grandparent (may trigger further adjustment).
* If the grantparent = root, flip it from red to black.

54
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nsert: Case 3

 Make a new red node.

* Insert it as you would normally?
* Fix things up if needed.

=

]

UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)

THE HONG KONG
Only flip colors?

BEBRBEKE (M)

No!

What if it looks like this?
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e Recall Rotations:

Rotate
+

Flip color

/, -
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Many cases

* Suppose we want to insert 0

* 3 “important” cases for different colorings of the existing tree, and
there are 9 more cases for all of the various symmetries of these 3
cases.

57
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(Binary) Heaps

58



- Revisiting FindMin & _

e Application: Find the smallest (or highest priority) item
quickly
— Operating system needs to schedule jobs according to
priority instead of FIFO

— Event simulation (bank customers arriving and departing, ordered
according to when the event happened)

— Find student with highest grade, employee with highest salary etc.

60
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* Priority Queue can efficiently do:

— FindMin (and DeleteMin)
— Insert

 What if we use...
— Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?

— Binary Search Trees: What is the run time for Insert and FindMin?

— Hash Tables (Maybe next lecture): What is the run time for Insert and
FindMin?

61



' Less Flexibility = More Speed W i

* Lists
— If sorted: FindMin is O(1) but Insert is O(N)

— If not sorted: Insert is O(1) but FindMin is O(N)

e Balanced Binary Search Trees (BSTs)
— Insert is O(log N) and FindMin is O(log N)

e BSTs look good but...

— BSTs are efficient for all Finds, not just FindMin
— We only need FindMin

62



- Better than a speeding BST @7_

* Can we do better than Balanced Binary Search Trees?
—Very limited requirements: Insert, FindMin, DeleteMin

—The goals are:
* FindMinis 0(1)
* Insertis O(log N)
* DeleteMinis O(log N)

63
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 Abinary heap is a binary tree (NOT a BST) that is:

— Complete: the tree is completely filled except possibly the
bottom level, which is filled from left to right

— Satisfies the heap order property
* every node is less than or equal to its children (MinHeap, the default)
 orevery node is greater than or equal to its children (for MaxHeap)

* The root node is always the smallest node
— or the largest, depending on the heap order (for MaxHeap)
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' Heap order property W s

* A heap provides limited ordering information

e Each path is sorted, but the subtrees are not sorted relative to each
other
— A binary heap is NOT a binary search tree

These are all valid binary min heaps

65



- Binary Heap vs Binary Search Tree W i

Binary Heap Binary Search Tree

Parent is less than both Parent is greater than left
left and right children child, less than right child

66



- Structure Property W s

* A binary heap is a complete tree

—All nodes are in use except for possibly the right end of the bottom
row

67
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complete tree,
heap order is "max"

not
complete

complete tree,
heap order is

min

complete tree, but
min heap order is
broken
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- Array Implementation (Implicit Pointers) W i

* Root node = A[1]

* Children of A[i] = A[2i], A[2i + 1]

* Parent of A[j] =A[]j// 2]

» Keep track of current size N (number of nodes)

1
N , 2
wwe | - 1214675 oG
index 0 1 2 3 4 5 6 7
i 4 5
N=5

69
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* FindMin: Easy!
—Return root value A[1]
—Run time ="

e DeleteMin:

70



- Maintain the Structure Property W i

* Delete (and return) value at root node

71



- Maintain the Structure Property W i

e We now have a “Hole” at the root

* Need to fill the hole with another
value

* When we get done, the tree will
have one less node and must still
be complete

72



- Maintain the Heap Property W i

* The last value has lost its 114
node
* we need to find a new place
for it

73



- DeleteMin: Percolate Down @J_

* Keep comparing with children A[2i] and A[2i + 1]

* Copy smaller child up and go down one level

* Done if both children are > item or reached a leaf node
* What is the run time?
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PercDown (i: integer,

X: 1integer) : {

// N 1s the number elements, 1 1s the hole, x 1s the value to insert

Case {
No child 21

One child at the end 21

Two Children 21

Al1] := x; // At bottom

if A[21] < x then A[i]:= A[21]; A[21] = X
else A[i1] := x

if A[21] < A[21i+1l] then j := 21

else 7 := 21+1

if A[j] < x then
A[i1i]l:= A[j]; Perchown (], x);

else A[i1] := x

75



- DeleteMin: Run Time Analysis @J_

* Run time is O(depth of heap)
* A heap is a complete binary tree

* Depth of a complete binary tree of N nodes?
—depth =log(N)

* Run time of DeleteMin is O (log N)
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e Add a value to the tree

e Structure and heap order
properties must still be
correct when we are done

77



- Maintain the Structure Property W i

* The only valid place for a new
node in a complete tree is at the
end of the array

 We need to decide on the
correct value for the new node,
and adjust the heap accordingly

78



- Maintain the Heap Property W i

* The new value goes where?

79
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e Start at last node and keep comparing with parent A[i/2]
* If parent larger, copy parent down and go up one level
* Done if parent < item or reached top node A[1]

80
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e Run time?
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* Space needed for heap of N nodes: O(MaxN)
—An array of size MaxN, plus a variable to store the size N

* Time
—FindMin: O(1)
—DeleteMin and Insert: O(log N)
—BuildHeap from N inputs ??7?
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BuildHeap {
for 1 = N/2 to 1
PercDown (1, A[i])

o (0] @

2 . ;

s it @/\@

@ @‘WD @<gg<3
@@@@11 DDE @
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N e

IO
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* Naive considerations:
—n/2 calls to PercDown, each takes c - log(n)
— Total: ¢ - n - log(n)

 More careful considerations:
— Only O(n)
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2h+1

Assume n = — 1 where h is height of the tree

— Thus, level h has 2™ nodes but there is nothing to PercDown
— At level h — 1 there are 2" 1 nodes, each might percolate down 1 level
— At level h — j, there are 2"=J nodes, each might percolate down j levels

h h
. 2h
— . h_] — .
T(n) E j2 E ey
j=0 j=0

Total Time = 0 (n)



- Other Heap Operations W s

Find(X, H): Find the element X in heap H of N elements
— What is the running time? O(N)

FindMax(H): Find the maximum element in H

Where FindMin is O (1)

— What is the running time? O(N)

We sacrificed performance of these operations in order to get
O (1) performance for FindMin
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- Other Heap Operations W& _

* DecreaseKey(P,A,H): Decrease the key value of node at position P by
a positive amount A, e.g., to increase priority

— First, subtract A from current value at P
— Heap order property may be violated

— so percolate up to fix

— Running Time: O(log N)
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- Other Heap Operations W& _

* Delete(P,H): E.g. Delete a job waiting in queue that has been
preemptively terminated by user

— Use DecreaseKey(P, A,H) followed by DeleteMin
— Running Time: O(log N)

* Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and
H2 are stored in two arrays.

— Cando O(N) Insert operations: O(N log N) time

— Better: Copy H2 at the end of H1 and use BuildHeap.
Running Time: O(N)
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- Other Heap Operations W _

* Merge(H1,H2): Merge two heaps H1 and H2 of size O(N).
H1 and H2 are stored in two arrays.

— Cando O(N) Insert operations: O(N log N) time

— Better: Copy H2 at the end of H1 and use BuildHeap.
Running Time: O(N)
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* |[dea: buildHeap then call deleteMin ntimes

input = buildHeap(...);
output = new E[n];
for (inti=0;i<n;i++)
output[i] = deleteMin(input);

}

 Runtime?
» Best-case
 Worst-case
« Average-case

« Stable?
* In-place?
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* [dea: buildHeap then call deleteMin n times

input = buildHeap(...);
output = new E[n];
for (inti=0;i<n;i++){
output[i] = deleteMin(input);

}

* Runtime?
* Best-case, Worst-case, and Average-case: O (n log(n))

 Stable? No.
* In-place? No. But it could be, with a slight trick...
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- In-place Heap Sort

* Treat the initial array as a heap (via buildHeap)
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But this reverse sorts

— how would you fix
that?

 When you delete the 1thelement, putitat arr [n—-1]

* That array location isn’t needed for the heap anymore!

arr[n-i]=

| J\ )
| |
heap part sorted part
put the min at the end of the heap data
| ]\ Y )
hea!) part sorted part

deleteMin ()
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Sure, we can also use an AVL tree to:

* Insert each element: total time O(nlogn)

* Repeatedly deleteMin: total time O(n logn)
— Better: in-order traversal O(n), but still O(n logn) overall

* But this cannot be done in-place and has worse constant factors than
heap sort
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