
DSAA 2043 | Design and Analysis of Algorithms

Advanced Data Structures

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

ØBinary Search Trees
ØAVL Trees
ØRed-Black Trees
ØHeaps

Jing Tang 2

Binary Search Tree

Binary Search Tree

3

1 2 3 4 5 6 7 8

Sorted Array:

Linked list (not necessarily sorted):

5 4 1 3 2 7 6 8

Array

• 𝑂(𝑛)	INSERT/DELETE:
– First, find the relevant element (we’ll see how below), and then

move a bunch elements in the array:

• 𝑂(log(𝑛))	SEARCH (if sorted):

4

421 3 8754.5

42 871 3 5

Linked Lists

• 𝑂(1) INSERT (manipulating pointers)

• 𝑂(𝑛) SEARCH/DELETE:

5

5

4 1 3 2 7 6 8HEAD

4 1 3 2 7 6 8HEAD

eg, search for 3 (and then you could delete it by manipulating pointers).

Binary Search Tree

6

Arrays Linked Lists (Balanced)
Binary Search
Trees

Search 𝑂 𝑛
(𝑂(log 𝑛) if sorted)

𝑂(𝑛)

Delete 𝑂(𝑛) 𝑂(𝑛)

Insert 𝑂(𝑛) 𝑂(1)

𝑂(log 𝑛)

𝑂(log 𝑛)

𝑂(log 𝑛)

Binary Tree Terminology

7

Each node has two children

The height of this tree is 3

42 8

7

1

3

5
This node is

the root

These nodes
are leavesNILNIL

Both children of are NIL (usually not drawn)1

42

3

5

Left child Right child

Parent

Key: 3

is a descendant of2 5 is an ancestor of 5 2

of edges in the longest path

Binary Search Tree

• A BST is a binary tree such that:
– Every LEFT descendant of a node has key less than that node.
– Every RIGHT descendant of a node has key larger than that node.

8

4

2

8 7
1

3
5

Binary Search Tree

• A BST is a binary tree so that:
– Every LEFT descendant of a node has key less than that node.
– Every RIGHT descendant of a node has key larger than that node.

9

4

2

8 7
1

3
5

Binary Search Tree
• A BST is a binary tree so that:

– Every LEFT descendant of a node has key less than that node.
– Every RIGHT descendant of a node has key larger than that node.

10

4
2

8

7
1

3
5

Binary Search Tree
• A BST is a binary tree so that:

– Every LEFT descendant of a node has key less than that node.
– Every RIGHT descendant of a node has key larger than that node.

11

42 8

7
1

3

5

Binary Search Tree
• A BST is a binary tree so that:

– Every LEFT descendant of a node has key less than that node.
– Every RIGHT descendant of a node has key larger than that node.

12

42 8

7

1

3

5 Q: Is this the only
binary search tree I
could possibly build
with these values?

Traversal

• Output all the elements in sorted order!

• inOrderTraversal(x):
– if x!= NIL:

• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

13

42

73

5

NIL NIL

2 3 4 5 7
Sorted!

Pre-order / post-order traversal?

Search

14

42 8

7

1

3

5
EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5
• Sometimes, it will be convenient

to return 4 in this case
• (that is, return the last node

before we went off the tree)!!!!
Semantics:
• find the largest element in the

collection that is no larger than the
search key

• Largest predecessor query

Insert

15

42 8

7

1

3

5
EXAMPLE: Insert 4.5

4.5

• INSERT(key):
• x = SEARCH(key)
• Insert a new node with

desired key at x…
!!!!

x = 4

Insert

16

42 8

7

1

3

5
EXAMPLE: Insert 4.5

4.5

!!!!

x = 4

• INSERT(key):
• x = SEARCH(key)
• if key > x.key:

• Make a new node with the
correct key, and put it as the
right child of x

• if key < x.key:
• Make a new node with the

correct key, and put it as the
left child of x

• if x.key == key:
• return Semantics?

Delete

17

42 8

7

1

3

5
EXAMPLE: Delete 2

• DELETE(key):
• x = SEARCH(key)
• if x.key == key:

• ….delete x….

This is a bit more complicated…x = 2

Delete

18

3
Case 1: if 3 is a leaf,
 just delete it.

5 5

This triangle
is a cartoon
for a subtree

2

3

Case 2: if 3 has just one child,
move that up.

5

2

5

Delete

19

42

3

5
3.1

2

5

Case 3: if 3 has two children,
replace 3 with it’s immediate successor.
(aka, next biggest element after 3)

• Does this maintain the BST
property?

• Yes
• How do we find the

immediate successor?
• SEARCH for 3 in the subtree

under 3.right
• How do we remove it when

we find it?
• If [3.1] has 0 or 1 children,

do one of the previous cases
• What if [3.1] has two

children?
• It doesn’t

4

3.1

Why?

Why?

More Operations

• findmin(x): finds the minimum of the tree rooted at x
• findmax(x): finds the max of the tree rooted at x
• deletemin(): finds the minimum of the tree and delete it

Time complexities of them?

20

Best case
(when?)

Worst case
(when?)

The Importance of Being Balanced

21

4

2

8
7

3

5
6

• This is a valid binary search tree

• The version with n nodes has
depth 𝑛, not Θ(log(𝑛))

Balanced BST Strategy

• Augment every node with some property
• Define a local invariant on property
• Show (prove) that invariant guarantees Θ log 𝑛 height
• Design algorithms to maintain property and the invariant

22

Jing Tang 23

AVL Trees

AVL Trees

24

An AVL (Adelson-Velskii and Landis) tree is a binary search tree that also meets
the following rule

AVL condition: For every node, the height of its left subtree and right
subtree differ by at most 1.

Height of a tree:
Maximum number of edges on a path from the root to a leaf.

A tree with one node has height 0.
A null tree (no nodes) has height -1.

AVL Trees

25

Which one(s) is balanced according to AVL’s definition?

AVL Trees

26

An AVL tree is a binary search tree that also meets the following rule

AVL condition: For every node, the height of its left subtree
and right subtree differ by at most 1.

This will avoid the Θ 𝑛 behavior! We have to check:
1. We must be able to maintain this property when inserting/deleting.
2. Such a tree must have height Θ(log 𝑛) .

Bounding the Height

27

• Let 𝑛 ℎ be the minimum number of nodes in an AVL tree of height ℎ.
• If we can say 𝑛(ℎ) is big, we’ll be able to say that a tree with 𝑛 nodes

has a small height.

• So…what’s 𝑛(ℎ)?

• 𝑛 ℎ = -
1, 	 if	ℎ = 0
2, 	 if	ℎ = 1
𝑛 ℎ − 1 + 𝑛 ℎ − 2 + 1, otherwise

Bounding the Height

28

• Hey! That’s a recurrence!
• Recurrences can describe any kind of function, not just running time of code!

• 𝑛 ℎ = +
1, 	 if	ℎ = 0
2, 	 if	ℎ = 1
𝑛 ℎ − 1 + 𝑛 ℎ − 2 + 1, otherwise

• We could use tree method, but it’s a little…weird.
• It’ll be easier if we change things just a bit:

• 𝑛 ℎ ≥ +
1, 	 if	ℎ = 0
2, 	 if	ℎ = 1
𝑛 ℎ − 2 + 𝑛 ℎ − 2 + 1, otherwise

Bounding the Height

29

𝑛 ℎ = 𝑛 ℎ − 1 + 𝑛 ℎ − 2 + 1

> 2𝑛 ℎ − 2

> 2×2𝑛 ℎ − 4

> 2
(
)

ℎ < 2log 𝑛 ℎ

Hence, ℎ = Θ(log 𝑛).

Insertion

30

What happens if when the AVL condition is violated after insertion?

1
2

1
2

3

Insert 3

Balanced Imbalanced

Insertion

31

Rotations!

1
2

3
1

2

3

Rotations can reduce the height!

Insertion / Deletion

32

• Insert new node u as in the simple BST
• Can create imbalance

• Work your way up the tree, restoring
the balance

• Similar issue/solution when deleting a
node

Balancing

33

• Let x be the lowest “violating” node
• we will try to correct that and move up

the tree

• Assume that x is “right-heavy”
• we analyze more the right subtree of x
• y is the right child of x

• Scenarios
• Case 1: y is right-heavy / balanced
• Case 2: y is left-heavy

The right child of x
has +2 height than
the left child of x

Balancing

Case 1.1: y is right-heavy

34

Balancing

Case 1.2: y is balanced

35

Same as Case 1.1

Balancing

Case 2: y is left-heavy

36

Still not
balanced

Balancing

Case 2: y is left-heavy

37

Balancing

Case 2: y is left-heavy

38

Balancing

Case 2: y is left-heavy (final solution)

39

Four Types of Rotations

40

Insert location Solution
Left subtree of left
child (A)

Single right rotation

Right subtree of
left child (B)

Double (left-right) rotation

Left subtree of
right child (C)

Double (right-left) rotation

Right subtree of
right child (D)

Single left rotation

x

y

z

A B C D

To summarize

Other Self-Balancing Trees

• “Red-black trees” work on a similar principle to AVL trees.
• “Splay trees”: Get 𝑂(log 𝑛)	 amortized bounds for all operations.
• “Scapegoat trees”: worst case 𝑂(log 𝑛)	search complexity. Others are

same as splay trees.
• “Treaps” – a BST and heap in one (!)

Similar tradeoffs to AVL trees.

41

Jing Tang 42

Red-Black Trees

Red-Black Trees

• AVL trees requires more rotations during insertion/deletion due to
relatively strict balancing.

• What if we relax the constraint a bit and use some proxy of balancing?

43

Red-Black tree
!

42 8

73

5

6
Maintain balance by stipulating that
black nodes are balanced, and that
there aren’t too many red nodes.

Red-Black Trees

• Every node is colored red or black.
• The root node is a black node.
• NIL children count as black nodes.
• Children of a red node are black nodes.
• For all nodes x:

– all paths from x to NIL’s have the same
number of black nodes on them.

44

42 8

73

5

6

Red-Black Trees
• Node color: Every node is colored red or black.
• Root node is black: The root node is a black node.
• Leaves (NIL) are black: NIL children count as black nodes.
• No double red: Both children of a red node are black nodes.
• Black-height consistency: For all nodes x:

– all paths from x to NIL’s have the same number of black nodes on them.

45

Which of these
are red-black trees?

(NIL nodes not drawn)

1 minute think
1 minute share

No! No! No!

Why These Rules?

• This is pretty balanced.
– The black nodes are balanced
– The red nodes don’t mess things up too much.

•We can maintain this property as we insert/delete nodes, by
using rotations or color flipping.

46

42 8

73

5

6

9

Why These Rules?

• This is “pretty balanced”.

• Conjecture:
– the height of a red-black tree with 𝑛 nodes is at most 2	log(𝑛)

47

One path can be at most
twice as long as another if
we pad it with red nodes.

Black-height (wrt #nodes) = 3
Height = 6

Why These Rules?

The height of a RB-tree with 𝑛 non-NIL nodes is at most
2log!(𝑛 + 1).

•Prove it?

48

Insert / Delete

• Since the insertion and deletion in RB Trees are complicated,
you don’t need to master the details of them.

– You should know what the “proxy for balance” property is and why
it ensures approximate balance.

– You should know that this property can be efficiently maintained,
but you do not need to know the details of how.

49

Insert

Many cases

• Suppose we want to insert 0

• 3 “important” cases for different colorings of the existing tree, and
there are 9 more cases for all of the various symmetries of these 3
cases.

50

73

6

73

6

73

6

Insert: Case 1

• Make a new red node.
• Insert it as you would normally.

51

73

6

0

73

6

Insert: Case 2

• Make a new red node.
• Insert it as you would normally?
• Fix things up if needed.

52

73

6

What if it looks like this?

73

6

0

No!

Insert: Case 2

• Make a new red node.
• Insert it as you would normally?
• Fix things up if needed.

53

73

6

What if it looks like this?

73

6

0

No!

Can’t we just insert
0 as a black node?

One more black
node in this path!

Insert: Case 2

• An important observation: The root can be switched from red to black
without violating any rule.

• Add 0 as a red node.
• Flip the colors of its parent and uncle.
• Pass the red to the grandparent (may trigger further adjustment).
• If the grantparent = root, flip it from red to black.

54

73

6

0

Flip
colors!

Insert: Case 3

• Make a new red node.
• Insert it as you would normally?
• Fix things up if needed.

55

73

6

What if it looks like this?73

6

0

No!

Only flip colors?

73

6

0

Insert: Case 3

• Recall Rotations:

56

73

6

0

3

60

7

Rotate
+
Flip color

Insert

Many cases

• Suppose we want to insert 0

• 3 “important” cases for different colorings of the existing tree, and
there are 9 more cases for all of the various symmetries of these 3
cases.

57

73

6

73

6

73

6

Jing Tang 58

(Binary) Heaps

Revisiting FindMin

• Application: Find the smallest (or highest priority) item
quickly
– Operating system needs to schedule jobs according to

priority instead of FIFO
– Event simulation (bank customers arriving and departing, ordered

according to when the event happened)
– Find student with highest grade, employee with highest salary etc.

60

Priority Queue ADT

• Priority Queue can efficiently do:
– FindMin (and DeleteMin)
– Insert

• What if we use…
– Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
– Binary Search Trees: What is the run time for Insert and FindMin?
– Hash Tables (Maybe next lecture): What is the run time for Insert and

FindMin?

61

Less Flexibility è More Speed

• Lists
– If sorted: FindMin is O(1) but Insert is O(N)
– If not sorted: Insert is O(1) but FindMin is O(N)

• Balanced Binary Search Trees (BSTs)
– Insert is O(log N) and FindMin is O(log N)

• BSTs look good but…
– BSTs are efficient for all Finds, not just FindMin
– We only need FindMin

62

Better than a speeding BST

• Can we do better than Balanced Binary Search Trees?
– Very limited requirements: Insert, FindMin, DeleteMin
– The goals are:

• FindMin is 𝑂(1)
• Insert is 𝑂(log 𝑁)
• DeleteMin is 𝑂(log 𝑁)

63

Binary Heaps

• A binary heap is a binary tree (NOT a BST) that is:
– Complete: the tree is completely filled except possibly the

bottom level, which is filled from left to right
– Satisfies the heap order property

• every node is less than or equal to its children (MinHeap, the default)
• or every node is greater than or equal to its children (for MaxHeap)

• The root node is always the smallest node
– or the largest, depending on the heap order (for MaxHeap)

64

Heap order property

• A heap provides limited ordering information
• Each path is sorted, but the subtrees are not sorted relative to each

other
– A binary heap is NOT a binary search tree

65

2

4 6

7 5

0 1
1

2 6

8 4 7

These are all valid binary min heaps

-1

0

Binary Heap vs Binary Search Tree

66

9710

5 94

94 10

Binary Heap Binary Search Tree

min
value

min value

5 2497 24

Parent is greater than left
child, less than right child

Parent is less than both
left and right children

Structure Property

• A binary heap is a complete tree
– All nodes are in use except for possibly the right end of the bottom

row

67

Examples

68

2

7

4 6

5
complete tree,
heap order is
"min"

2

64

5

not
complete

6

4 2

complete tree,
heap order is "max"

2

7

5 6

4

complete tree, but
min heap order is
broken

Array Implementation (Implicit Pointers)

• Root node = A[1]
• Children of A[i] = A[2i], A[2i + 1]
• Parent of A[j] = A[j // 2]
• Keep track of current size 𝑁 (number of nodes)

69

5 6

N = 5

value

index
64

57

1
2

- 2 4 6 7 5
0 1 2 3 4 7

54

32

FindMin and DeleteMin

• FindMin: Easy!
– Return root value A[1]
– Run time = ?

• DeleteMin:
– Delete (and return) value at root node?

70

2

34

7 5 8 10

11 9 6 14

Maintain the Structure Property

71

• Delete (and return) value at root node

34

7 5 8 10

11 9 6 14

Maintain the Structure Property

72

•We now have a “Hole” at the root
• Need to fill the hole with another

value
•When we get done, the tree will

have one less node and must still
be complete

34

7 5 8 10

11 9 6 14

34

5 8 107

11 9 6 14

Maintain the Heap Property

73

• The last value has lost its
node

• we need to find a new place
for it 34

5 8 107

14

11 9 6

DeleteMin: Percolate Down

74

• Keep comparing with children A[2i] and A[2i + 1]
• Copy smaller child up and go down one level
• Done if both children are ≥ item or reached a leaf node
• What is the run time?

34

5 8 107

14

4

5 8 107

143

84

5 14 107

11 9 6 11 9 6 11 9 6

3
?

?

Percolate Down

75

PercDown(i: integer, x: integer): {

// N is the number elements, i is the hole, x is the value to insert

 Case {

 2i > N: A[i] := x; // At bottom

 2i = N: if A[2i] < x then A[i]:= A[2i]; A[2i] := x

 else A[i] := x

 2i < N: if A[2i] < A[2i+1] then j := 2i
 else j := 2i+1

 if A[j] < x then

 A[i]:= A[j]; PercDown(j, x);

 else A[i] := x

 }

}

No child

One child at the end

Two Children

DeleteMin: Run Time Analysis

• Run time is 𝑂(𝑑𝑒𝑝𝑡ℎ	𝑜𝑓	ℎ𝑒𝑎𝑝)
• A heap is a complete binary tree
• Depth of a complete binary tree of N nodes?

– depth = log(𝑁)
• Run time of DeleteMin is 𝑂(log𝑁)

76

Insert

77

• Add a value to the tree
• Structure and heap order

properties must still be
correct when we are done

84

5 14 107

11 9 6

3

2

Maintain the Structure Property

78

• The only valid place for a new
node in a complete tree is at the
end of the array

• We need to decide on the
correct value for the new node,
and adjust the heap accordingly

84

5 14 107

11 9 6

3

2

Maintain the Heap Property

79

• The new value goes where?

84

5 14 107

11 9 6
2

3

Insert: Percolate Up

80

• Start at last node and keep comparing with parent A[i/2]
• If parent larger, copy parent down and go up one level
• Done if parent ≤ item or reached top node A[1]

2

84

7

11 9 6

3

5 14 10
?

2

84

7

11 9 6 5

3 2

8

14 10 7 4 14 10
?

11 9 6 5

3?

Insert: Done

81

• Run time?

83

4 14 107

2

11 9 6 5

Binary Heap Analysis

• Space needed for heap of N nodes: O(MaxN)
– An array of size MaxN, plus a variable to store the size N

• Time
– FindMin: O(1)
– DeleteMin and Insert: O(log N)
– BuildHeap from N inputs ???

82

Build Heap

83

BuildHeap {
 for i = N/2 to 1

PercDown(i, A[i])
}

105

9

1
11N=11

105

3 8 129

2 7 6 4

11

4

32

5 6 7
4 8 12

112 7 6 3
109

8

Build Heap

84

105

3 8 92

9 7 6 4

11

85

3 10 122

9 7 6 4

11

Build Heap

85

82

3 10 125

9 7 6 4

11

83

4 10 125

9 7 6 11

2

Time Complexity

• Naïve considerations:
– 𝑛/2	calls to PercDown, each takes 𝑐 ⋅ log(𝑛)
– Total: 𝑐 ⋅ 𝑛 ⋅ log(𝑛)

• More careful considerations:
– Only 𝑂(𝑛)

86

Analysis of Build Heap

Assume 𝑛 = 2(*+	– 1	where h is height of the tree

– Thus, level ℎ has 2(nodes but there is nothing to PercDown
– At level ℎ − 1 there are 2(,+ nodes, each might percolate down 1 level
– At level ℎ − 𝑗, there are 2(,- nodes, each might percolate down 𝑗 levels

𝑇 𝑛 = D
-./

(

𝑗2(,- =D
-./

(

𝑗
2(

2-

Total Time = 𝑂(𝑛)

Other Heap Operations

• Find(X, H): Find the element X in heap H of 𝑁 elements
– What is the running time? 𝑂(𝑁)

• FindMax(H): Find the maximum element in H
• Where FindMin is 𝑂(1)

– What is the running time? 𝑂(𝑁)
• We sacrificed performance of these operations in order to get
𝑂(1)	performance for FindMin

88

Other Heap Operations

• DecreaseKey(P,Δ,H): Decrease the key value of node at position P by
a positive amount Δ, e.g., to increase priority
– First, subtract Δ from current value at P
– Heap order property may be violated
– so percolate up to fix
– Running Time: 𝑂(log𝑁)

89

Other Heap Operations

• Delete(P,H): E.g. Delete a job waiting in queue that has been
preemptively terminated by user
– Use DecreaseKey(P, Δ,H) followed by DeleteMin
– Running Time: 𝑂(log𝑁)

• Merge(H1,H2): Merge two heaps H1 and H2 of size 𝑂(𝑁). H1 and
H2 are stored in two arrays.
– Can do 𝑂(𝑁)	Insert operations: 𝑂(𝑁	log𝑁)	time
– Better: Copy H2 at the end of H1 and use BuildHeap.

 Running Time: 𝑂(𝑁)

90

Other Heap Operations

• Merge(H1,H2): Merge two heaps H1 and H2 of size 𝑂(𝑁).
H1 and H2 are stored in two arrays.
– Can do 𝑂(𝑁)	Insert operations: 𝑂(𝑁	log𝑁)	time
– Better: Copy H2 at the end of H1 and use BuildHeap.

 Running Time: 𝑂(𝑁)

91

Heap Sort

92

• Idea: buildHeap then call deleteMin n times

• Runtime?
• Best-case
• Worst-case
• Average-case

• Stable?
• In-place?

input = buildHeap(...);
output = new E[n];
for (int i = 0; i < n; i++) {
 output[i] = deleteMin(input);
}

Heap Sort

93

• Idea: buildHeap then call deleteMin 𝑛 times

• Runtime?
• Best-case, Worst-case, and Average-case: 𝑂(𝑛	log(𝑛))

• Stable? No.
• In-place? No. But it could be, with a slight trick...

input = buildHeap(...);
output = new E[n];
for (int i = 0; i < n; i++) {
 output[i] = deleteMin(input);
}

In-place Heap Sort

94

• Treat the initial array as a heap (via buildHeap)
• When you delete the ith element, put it at arr[n-i]

• That array location isn’t needed for the heap anymore!

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

put the min at the end of the heap data

But this reverse sorts
– how would you fix
that?

AVL Sort?

Sure, we can also use an AVL tree to:

• Insert each element: total time 𝑂(𝑛log 𝑛)
• Repeatedly deleteMin: total time 𝑂(𝑛 log 𝑛)

– Better: in-order traversal 𝑂(𝑛), but still 𝑂(𝑛	log 𝑛)	overall

• But this cannot be done in-place and has worse constant factors than
heap sort

95

