
DSAA 2043 | Design and Analysis of Algorithms

Divide-and-Conquer

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

➢Merge Sort

➢Divide-and-Conquer

➢Master Theorem

➢Quick Sort

Jing Tang 2

Merge Sort

Merge Sort

3

MERGE-SORT A[1 . . n]

1. If n = 1, done

2. Recursively sort A[1 . . n/2]
and A[n/2+1 . . n]

3. “Merge” the 2 sorted lists

Key subroutine: MERGE

Merging Two Sorted Arrays

4

20 12

13 11

7 9

2 1

1

20 12 20 12 20 12 20 12 20 12 20 12

13 11 13 11 13 11 13 11 13 11 13

7 9 7 9 7 9 9

2 1 2

122 7 9 11

Analyzing Merge Sort

5

MERGE-SORT A[1 . . n]

1. If n = 1, done

2. Recursively sort A[1 . . n/2]
and A[n/2+1 . . n]

3. “Merge” the 2 sorted lists

T(n)

(1)

2T(n/2)

(n)
Abuse

Sloppiness: Should be T(n/2) + T(n/2) ,

but it turns out not to matter asymptotically.

Recurrence for Merge Sort

6

T(n) =
(1) if n = 1;

2T(n/2) + (n) if n > 1.

• We shall usually omit stating the base case when T(n) =
(1) for sufficiently small n, but only when it has no effect
on the asymptotic solution to the recurrence.

• CLRS provides several ways to find a good upper bound on
T(n).

Recursion Tree

7

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Recursion Tree

8

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

Recursion Tree

9

T(n/2) T(n/2)

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

Recursion Tree

10

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

Recursion Tree

11

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

Recursion Tree

12

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

Recursion Tree

13

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

Recursion Tree

14

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn/4 cn/4 cn/4 cn/4

cn/2

(1)

h = lg n

cn cn

cn/2 cn

Recursion Tree

15

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn/4 cn/4

cn/2

(1)

h = lg n

cn cn

cn/2 cn

cn/4 cn/4 cn

…

Recursion Tree

16

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn/4 cn/4

cn/2

(1)

h = lg n

cn cn

cn/2 cn

cn/4 cn/4 cn

#leaves = n (n)

…

Recursion Tree

17

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn/4 cn/4

cn/2

(1)

h = lg n

cn cn

cn/2 cn

cn/4 cn/4 cn

#leaves = n (n)

Total = (n lg n)

…

Conclusions

18

• (n lg n) grows more slowly than (n2).

• Therefore, merge sort asymptotically beats insertion sort
in the worst case.

• In practice, merge sort beats insertion sort for n > 30 or so.

• Go test it out for yourself!

Jing Tang 19

Divide and Conquer

The Divide-and-Conquer Design Paradigm

20

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

Merge Sort

21

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

Merge Sort

22

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n) = 2 T(n/2) +(n)

subproblems

subproblem size

work dividing
and combining

Master Theorem (Reprise)

23

T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ), constant  > 0

 T(n) = (nlogba)

CASE 2: f (n) = (nlogba lgln), constant l  0

 T(n) = (nlogba lgl+1n)

CASE 3: f (n) = (nlogba + ), constant  > 0,
and regularity condition a f(n/b) ≤ c f(n),
constant c < 1 for all sufficiently large n

 T(n) = (f (n))

Master Theorem (Reprise)

24

T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ), constant  > 0

 T(n) = (nlogba)

CASE 2: f (n) = (nlogba lgln), constant l  0

 T(n) = (nlogba lgl+1n)

CASE 3: f (n) = (nlogba + ), constant  > 0,
and regularity condition a f(n/b) ≤ c f(n),
constant c < 1 for all sufficiently large n

 T(n) = (f (n))

Merge sort: a = 2, b = 2  nlogba = nlog22 = n

 CASE 2 (l = 0)  T(n) = (n lg n)

Master Theorem (Proof)

25

T(n) = a T(n/b) + f (n)

For case1：

For case3：

We have: We have:

Multiply
both sides:

Try to solve case 2 in lab!

Binary Search

26

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Binary Search

27

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Binary Search

28

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Binary Search

29

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Binary Search

30

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Binary Search

31

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Binary Search

32

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Recurrence for Binary Search

33

T(n) = 1 T(n/2) +(1)

subproblems

subproblem size

work dividing
and combining

Recurrence for Binary Search

34

T(n) = 1 T(n/2) +(1)

subproblems

subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1  CASE 2 (l =0)

 T(n) = (lg n) .

Powering a Number

35

Problem: Compute an, where nN.

Naive algorithm: (n).

Powering a Number

36

an=
an/2 an/2

a(n–1)/2 a (n–1)/2 a

if n is even;

if n is odd.

Problem: Compute an, where nN.

Naive algorithm: (n).

Divide-and-conquer algorithm:

Powering a Number

37

an=
an/2 an/2

a(n–1)/2 a (n–1)/2 a

if n is even;

if n is odd.

T(n) = T(n/2) + (1)  T(n) = (lg n) .

Problem: Compute an, where nN.

Naive algorithm: (n).

Divide-and-conquer algorithm:

Fibonacci Numbers

38

Recursive definition:

Fn =

1 if n = 0;

2 if n = 1;

Fn–1 + Fn–2 if n  2.

0 1 1 2 3 5 8 13 21 34 ...

Fibonacci Numbers

39

Recursive definition:

Fn =

0

1

Fn–1 + Fn–2

if n = 0;

if n = 1;

if n  2.

0 1 1 2 3 5 8 13 21 34 ...

Naive recursive algorithm: ( n)

(exponential time), where  = (1+ 5)/2
is the golden ratio.

Computing Fibonacci Numbers

40

Bottom-up:

• Compute F0, F1, F2, …, Fn in order, forming
each number by summing the two previous.

• Running time: (n).

Computing Fibonacci Numbers

41

Bottom-up:

• Compute F0, F1, F2, …, Fn in order, forming
each number by summing the two previous.

• Running time: (n).

Naive recursive squaring:

Fn = n/5 rounded to the nearest integer.

• Recursive squaring: (lg n) time.

• This method is unreliable, since floating-point
arithmetic is prone to round-off errors.

Recursive Squaring

42

Theorem:

Recursive Squaring

43

Theorem:

Algorithm: Recursive squaring.

Time = (lg n) .

Recursive Squaring

44

Theorem:

Base (n = 1):

Algorithm: Recursive squaring.

Time = (lg n) .

Proof of theorem. (Induction on n.)

Recursive Squaring

45

Inductive step (n  2):

Or Equivalently

46

Matrix Multiplication

47

n

cij =aik bkj

k=1

Input: A = [aij], B = [bij].

Output: C = [cij] = AB.
i, j = 1, 2,… , n.

Standard Algorithm

48

for i  1 to n

do for j  1 to n

do cij 0

for k  1 to n

do cij  cij + aik bkj

Standard Algorithm

49

for i  1 to n

do for j  1 to n

do cij 0

for k  1 to n

do cij  cij + aik bkj

Running time = (n3)

Divide-and-Conquer Algorithm

50

IDEA:
nn matrix = 22 matrix of (n/2)(n/2) submatrices:

C = A B
r = ae + bg

s = af + bh

t = ce + dg

u = cf +dh

8 mults of (n/2)(n/2) submatrices

4 adds of (n/2)(n/2) submatrices

Divide-and-Conquer Algorithm

51

IDEA:
nn matrix = 22 matrix of (n/2)(n/2) submatrices:

r = ae + bg

s = af + bh

t = ce + dh

u = cf +dg

8 mults of (n/2)(n/2) submatrices

4 adds of (n/2)(n/2) submatrices
^

recursive
C = A B

Analysis of D&C Algorithm

52

submatrices

submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +(n2)

Analysis of D&C Algorithm

53

nlogba = nlog28 = n3  CASE 1  T(n) = (n3).

submatrices

submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +(n2)

Analysis of D&C Algorithm

54

nlogba = nlog28 = n3  CASE 1  T(n) = (n3).

No better than the ordinary algorithm.

submatrices

submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +(n2)

Strassen’s Idea

55

• Multiply 22 matrices with only 7 recursive mults.

Strassen’s Idea

56

• Multiply 22 matrices with only 7 recursive mults.

P1 = a  (f – h)

P2 = (a + b)  h

P3 = (c + d)  e

P4 = d (g –e)

P5 = (a + d)  (e + h)

P6 = (b – d)  (g +h)

P7 = (a – c)  (e + f)

Strassen’s Idea

57

• Multiply 22 matrices with only 7 recursive mults.

P1 = a  (f – h)

P2 = (a + b)  h

P3 = (c + d)  e

P4 = d (g –e)

P5 = (a + d)  (e + h)

P6 = (b – d)  (g +h)

P7 = (a – c)  (e + f)

r = P5 + P4 – P2 + P6

s = P1 + P2

t = P3 + P4

u = P5 + P1 – P3 –P7

Strassen’s Idea

58

7 mults, 18 adds/subs.

Note: No reliance on

commutativity of mult!

• Multiply 22 matrices with only 7 recursive mults.

P1 = a  (f – h)

P2 = (a + b)  h

P3 = (c + d)  e

P4 = d (g –e)

P5 = (a + d)  (e + h)

P6 = (b – d)  (g +h)

P7 = (a – c)  (e + f)

r = P5 + P4 – P2 + P6

s = P1 + P2

t = P3 + P4

u = P5 + P1 – P3 –P7

Strassen’s Idea

59

• Multiply 22 matrices with only 7 recursive mults.

P1 = a  (f – h)

P2 = (a + b)  h

P3 = (c + d)  e

P4 = d (g –e)

P5 = (a + d)  (e + h)

P6 = (b – d)  (g +h)

P7 = (a – c)  (e + f)

r = P5 + P4 – P2 + P6

= (a + d) (e + h)

+ d (g – e) – (a + b) h

+ (b – d) (g +h)

= ae + ah + de + dh

+ dg –de – ah – bh

+ bg + bh – dg – dh

= ae + bg

Strassen’s Algorithm

60

1. Divide: Partition A and B into
(n/2)(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)(n/2) submatrices.

Strassen’s Algorithm

61

1. Divide: Partition A and B into
(n/2)(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)(n/2) submatrices.

T(n) = 7 T(n/2) +(n2)

Analysis of Strassen

62

T(n) = 7 T(n/2) +(n2)

Analysis of Strassen

63

T(n) = 7 T(n/2) +(n2)

nlogba = nlog27  n2.81  CASE 1  T(n) = (nlg 7).

Analysis of Strassen

64

T(n) = 7 T(n/2) +(n2)

nlogba = nlog27  n2.81  CASE 1  T(n) = (nlg 7).

The number 2.81 may not seem much smaller than

3, but because the difference is in the exponent, the

impact on running time is significant. In fact,

Strassen’s algorithm beats the ordinary algorithm

on today’s machines for n  32 or so.

Analysis of Strassen

65

T(n) = 7 T(n/2) +(n2)

nlogba = nlog27  n2.81  CASE 1  T(n) = (nlg 7).

The number 2.81 may not seem much smaller than

3, but because the difference is in the exponent, the

impact on running time is significant. In fact,

Strassen’s algorithm beats the ordinary algorithm

on today’s machines for n  32 or so.

Best to date (of theoretical interest only): (n2.376…).

Conclusion

66

• Divide and conquer is just one of several powerful
techniques for algorithm design.

• Divide-and-conquer algorithms can be analyzed using
recurrences and the master method (so practice this math).

• The divide-and-conquer strategy often leads to efficient
algorithms.

Jing Tang 67

Quick Sort

Quick Sort

• A popular sorting algorithm discovered by C.A.R. Hoare in 1962
– In many situations, it’s the fastest, in 𝑂(𝑛 log 𝑛) time (for in-memory sorting)

• Basic scheme
– Divide: partition an array into two subarrays around a pivot 𝑥 such that

elements in left subarray ≤ 𝑥 ≤ the elements

– Conquer: recursively to quicksort each of these subarrays

– Combine: trivial

• Some embellishments we can make
– selection of the pivot

– sorting of small partitions

68

 x x  x

Quick Sort (Pseudo-Code)

69

QUICKSORT(A, p, r)

if p < r

then q  PARTITION(A, p, r)

QUICKSORT(A, p, q–1)

QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)

Partitioning

• Idea: Divide data into two groups, such that:

– All items with a key value higher than a specified amount (the
pivot) are in one group

– All items with a lower key value are in another

• Applications:

– Divide employees who live within 15 miles of the office with those
who live farther away

– Divide households by income for taxation purposes

– Divide computers by processor speed

70

Partitioning

• Say I have 12 values:
– 175 192 95 45 115 105 20 60 185 5 90 180

• I pick a pivot=104, and partition (NOT sorting yet):
– 95 45 20 60 5 90 | 175 192 115 105 185 180

– Note: In the future the pivot will be an actual element
– Also: Partitioning need not maintain order of elements and usually

won’t, although I did in this example

• The partition is the leftmost item in the right array:

– 95 45 20 60 5 90 | 175 192 115 105 185 180

• Which we return to designate where the division is located

71

Partitioning

• The partition process (two indexs)
– Start with two pointers: leftIndex initialized to one position to the left of the first cell;

rightIndex to one position to the right of the last cell

– leftIndex moves to the right; rightIndex moves to the left

• Stopping and Swapping
– When leftIndex encounters an item smaller than the pivot, it keeps going; when it finds a

larger item, it stops

– When rightIndex encounters an item larger than the pivot, it keeps going; when it finds a
smaller item, it stops

– When the two indexs eventually meet, the process is complete

– When the two indexs stop, swap the two elements

72

Efficiency: Partitioning

• O(n) time
– left starts at 0 and moves one-by-one to the right

– right starts at n-1 and moves one-by-one to the left

– When left and right cross, we stop.

• So we’ll hit each element just once

• Number of comparisons is n+1

• Number of swaps is worst case n/2
– Worst case, we swap every single time

– Each swap involves two elements

– Usually, it will be less than this
• Since in the random case, some elements will be on the correct side of the pivot

73

Modified Partitioning

• In preparation for Quicksort:

– Choose our pivot value to be the rightmost element

– Partition the array around the pivot

– Ensure the pivot is at the location of the partition
• Meaning, the pivot should be the leftmost element of the right subarray

• Example: Unpartitioned 42 89 63 12 94 27 78 3 50 36

• Partitioned around Pivot: 3 27 12 36 63 94 89 78 42 50

• What does this imply about the pivot element after the partition?

74

Placing the PIVOT

• Goal: Pivot must be in the leftmost position in the right subarray

– 3 27 12 36 63 94 89 78 42 50

• Our algorithm does not do this currently

• It currently will not touch the pivot

– left increments till it finds an element > pivot

– right decrements till it finds an element < pivot

– So the pivot itself won’t be touched, and will stay on the right:

– 3 27 12 63 94 89 78 42 50 36

75

Shifting the PIVOT

• We have this:

– 3 27 12 63 94 89 78 42 50 36

• Our goal is the position of 36

• Shift every element in the right subarray up (inefficient)

– 3 27 12 36 63 94 89 78 42 50

76

Swapping the PIVOT

• Just swap the leftmost with the pivot! Better

– 3 27 12 36 94 89 78 42 50 63

– We can do this because the right subarray is not in any particular order

• Just takes one more line to our Python method

– Basically, a single call to swap()

– Swaps A[end-1] (the pivot) with A[left]

 (the partition index)

77

Shall We Try It On An ARRAY?

• 1 7 5 3 6 9 0 4 8 2

• Let’s go step-by-step via Quick Sort

78

Shall We Try It On An ARRAY?

• 1 7 5 3 6 9 0 4 8 2

• Let’s go step-by-step via Quick Sort
– 1 0 2 3 6 9 7 4 8 5

– 0 1 | 2 | 3 4 5 7 6 8 9

– 0 | 1 | 2 | 3 4 | 5 | 7 6 8 9

– 0 | 1 | 2 | 3 | 4 | 5 | 7 6 8 | 9

– 0 | 1 | 2 | 3 | 4 | 5 | 7 6 | 8 | 9

– 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

79

BEST Case…

• We partition the array each time into two equal subarrays

• Say we start with array of size n = 2𝑖

• We recurse until the base case, 1 element

• Draw the tree
– First call -> Partition n elements, n operations

– Second calls -> Each partition n/2 elements, 2(n/2)=n operations

– Third calls -> Each partition n/4, 4(n/4) = n operations

– …

– (i+1)th calls -> Each partition n/2𝑖 = 1, 2𝑖(1) = n(1) = n ops

• Total: (i+1)*n = (log n + 1)*n -> O(n log n)

80

The Very BAD Case….

• If the array is sorted

• Let’s see the problem:

– 0 10 20 30 40 50 60 70 80 90

• What happens after the partition? This:

– 0 10 20 30 40 50 60 70 80 90

• This is sorted, but the algorithm doesn’t know it.

• It will then call itself on an array of zero size (the left subarray) and an
array of n-1 size (the right subarray).

• Producing:

– 0 10 20 30 40 50 60 70 80 90

81

The Very BAD Case….

• In the worst case, we partition every time into an array of n-1
elements and an array of 0 elements

• This yields O(𝑛2) time:
– First call: Partition n elements, n operations

– Second calls: Partition n-1 and 0 elements, n-1 operations

– Third calls: Partition n-2 and 0 elements, n-2 operations

– Draw the tree

• Yielding: Operations = n + n-1 + n-2 + … + 1 = n(n+1)/2 -> O(n2)

82

Summary

• What caused the problem was “blindly” choosing the pivot from the
right end.

• In the case of a reverse sorted array, this is not a good choice at all

• Can we improve our choice of the pivot? Let’s choose the middle of
three values

83

Median-Of-Three Partitioning

• Every time you partition, choose the median value of the left, center and right
element as the pivot

• Example:
– 44 11 55 33 77 22 00 99 101 66 88

• Pivot: Take the median of the leftmost, middle and rightmost
– 44 11 55 33 77 22 00 99 101 66 88 - Median: 44

• Then partition around this pivot:
– 11 00 33 22 44 77 55 99 101 66 88

• Increases the likelihood of an equal partition
– Also, it cannot possibly be the worst case

• 49

84

How This Fixes The WORST Case?

• Here’s our array:

– 0 10 20 30 40 50 60 70 80 90

• Let’s see on the board how this fixes things

• In fact in a perfectly sorted array, we choose the middle element as
the pivot!

– Which is optimal

– We get 𝑂(𝑁log𝑁)

• Vast majority of the time, if you use QuickSort with a Median-Of-
Three partition, you get 𝑂(𝑁log𝑁) behavior

85

One Final Optimization…

• After a certain point, just doing insertion sort is faster than
partitioning small arrays and making recursive calls

• Once you get to a very small subarray, you can just sort with insertion
sort

• You can experiment a bit with ‘cutoff’ values

– Knuth: n=9

86

Operation Count Estimates

• For QuickSort

• n=8: 30 comparisons, 12 swaps

• n=12: 50 comparisons, 21 swaps

• n=16: 72 comparisons, 32 swaps

• n=64: 396 comparisons, 192 swaps

• n=100: 678 comparisons, 332 swaps

• n=128: 910 comparisons, 448 swaps

• The only competitive algorithm is MergeSort

– But, takes much more memory like we said

87

Summary of Quicksort

• Quick sort operates in 𝑂(𝑁∗log𝑁) time (except when the simpler version is
applied to already-sorted data).

• Subarrays smaller than a certain size (the cutoff) can be sorted by a method other
than quicksort.

• The insertion sort is commonly used to sort subarrays smaller than the cutoff.

• The insertion sort can also be applied to the entire array, after it has been sorted
down to a cutoff point by quicksort.

88

	Title
	Slide 1: Divide-and-Conquer

	Merge Sort
	Slide 2: Merge Sort
	Slide 3: Merge Sort
	Slide 4: Merging Two Sorted Arrays
	Slide 5: Analyzing Merge Sort
	Slide 6: Recurrence for Merge Sort
	Slide 7: Recursion Tree
	Slide 8: Recursion Tree
	Slide 9: Recursion Tree
	Slide 10: Recursion Tree
	Slide 11: Recursion Tree
	Slide 12: Recursion Tree
	Slide 13: Recursion Tree
	Slide 14: Recursion Tree
	Slide 15: Recursion Tree
	Slide 16: Recursion Tree
	Slide 17: Recursion Tree
	Slide 18: Conclusions

	Divide and Conquer
	Slide 19: Divide and Conquer
	Slide 20: The Divide-and-Conquer Design Paradigm
	Slide 21: Merge Sort
	Slide 22: Merge Sort
	Slide 23: Master Theorem (Reprise)
	Slide 24: Master Theorem (Reprise)
	Slide 25: Master Theorem (Proof)
	Slide 26: Binary Search
	Slide 27: Binary Search
	Slide 28: Binary Search
	Slide 29: Binary Search
	Slide 30: Binary Search
	Slide 31: Binary Search
	Slide 32: Binary Search
	Slide 33: Recurrence for Binary Search
	Slide 34: Recurrence for Binary Search
	Slide 35: Powering a Number
	Slide 36: Powering a Number
	Slide 37: Powering a Number
	Slide 38: Fibonacci Numbers
	Slide 39: Fibonacci Numbers
	Slide 40: Computing Fibonacci Numbers
	Slide 41: Computing Fibonacci Numbers
	Slide 42: Recursive Squaring
	Slide 43: Recursive Squaring
	Slide 44: Recursive Squaring
	Slide 45: Recursive Squaring
	Slide 46: Or Equivalently
	Slide 47: Matrix Multiplication
	Slide 48: Standard Algorithm
	Slide 49: Standard Algorithm
	Slide 50: Divide-and-Conquer Algorithm
	Slide 51: Divide-and-Conquer Algorithm
	Slide 52: Analysis of D&C Algorithm
	Slide 53: Analysis of D&C Algorithm
	Slide 54: Analysis of D&C Algorithm
	Slide 55: Strassen’s Idea
	Slide 56: Strassen’s Idea
	Slide 57: Strassen’s Idea
	Slide 58: Strassen’s Idea
	Slide 59: Strassen’s Idea
	Slide 60: Strassen’s Algorithm
	Slide 61: Strassen’s Algorithm
	Slide 62: Analysis of Strassen
	Slide 63: Analysis of Strassen
	Slide 64: Analysis of Strassen
	Slide 65: Analysis of Strassen
	Slide 66: Conclusion

	Quick Sort
	Slide 67: Quick Sort
	Slide 68: Quick Sort
	Slide 69: Quick Sort (Pseudo-Code)
	Slide 70: Partitioning
	Slide 71: Partitioning
	Slide 72: Partitioning
	Slide 73: Efficiency: Partitioning
	Slide 74: Modified Partitioning
	Slide 75: Placing the PIVOT
	Slide 76: Shifting the PIVOT
	Slide 77: Swapping the PIVOT
	Slide 78: Shall We Try It On An ARRAY?
	Slide 79: Shall We Try It On An ARRAY?
	Slide 80: BEST Case…
	Slide 81: The Very BAD Case….
	Slide 82: The Very BAD Case….
	Slide 83: Summary
	Slide 84: Median-Of-Three Partitioning
	Slide 85: How This Fixes The WORST Case?
	Slide 86: One Final Optimization…
	Slide 87: Operation Count Estimates
	Slide 88: Summary of Quicksort

