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Merge Sort



Merge Sort
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MERGE-SORT A[1 . . n]

1. If n = 1, done

2. Recursively sort A[ 1 . . n/2 ]
and A[ n/2+1 . . n ]

3. “Merge” the 2 sorted lists

Key subroutine: MERGE



Merging Two Sorted Arrays
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20 12

13 11

7 9

2 1

1

20 12 20 12 20 12 20 12 20 12 20 12

13 11 13 11 13 11 13 11 13 11 13

7 9 7 9 7 9 9

2 1 2

122 7 9 11



Analyzing Merge Sort
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MERGE-SORT A[1 . . n]

1. If n = 1, done

2. Recursively sort A[ 1 . . n/2 ] 
and A[ n/2+1 . . n ]

3. “Merge” the 2 sorted lists

T(n)

(1)  

2T(n/2)

(n)
Abuse

Sloppiness: Should be T( n/2 ) + T( n/2 ) ,  

but it turns out not to matter asymptotically.



Recurrence for Merge Sort
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T(n) =
(1) if n = 1;

2T(n/2) + (n) if n > 1.

• We shall usually omit stating the base  case when T(n) = 
(1) for sufficiently  small n, but only when it has no effect 
on  the asymptotic solution to the recurrence.

• CLRS provides several ways to find a good upper bound on
T(n).



Recursion Tree
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Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.



Recursion Tree
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Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)



Recursion Tree
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T(n/2) T(n/2)

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn



Recursion Tree
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Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2



Recursion Tree
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Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)



Recursion Tree
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Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n



Recursion Tree
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cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn



Recursion Tree
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Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn/4 cn/4 cn/4 cn/4

cn/2

(1)

h = lg n

cn cn

cn/2 cn



Recursion Tree
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Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn/4 cn/4

cn/2

(1)

h = lg n

cn cn

cn/2 cn

cn/4 cn/4 cn

…



Recursion Tree
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Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn/4 cn/4

cn/2

(1)

h = lg n

cn cn

cn/2 cn

cn/4 cn/4 cn

#leaves = n (n)

…



Recursion Tree
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Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn/4 cn/4

cn/2

(1)

h = lg n

cn cn

cn/2 cn

cn/4 cn/4 cn

#leaves = n (n)

Total = (n lg n)

…



Conclusions

18

• (n lg n) grows more slowly than (n2).

• Therefore, merge sort asymptotically  beats insertion sort 
in the worst case.

• In practice, merge sort beats insertion  sort for n > 30 or so.

• Go test it out for yourself!
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Divide and Conquer



The Divide-and-Conquer Design Paradigm

20

1. Divide the problem (instance)  
into subproblems.

2. Conquer the subproblems by  
solving them recursively.

3. Combine subproblem solutions.



Merge Sort

21

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.



Merge Sort
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1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n) = 2 T(n/2) +(n)

# subproblems

subproblem size

work dividing  
and combining



Master Theorem (Reprise)
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T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ), constant  > 0

 T(n) = (nlogba)

CASE 2: f (n) = (nlogba lgln), constant l  0

 T(n) = (nlogba lgl+1n)

CASE 3: f (n) = (nlogba +  ), constant  > 0, 
and regularity condition a f(n/b) ≤ c f(n), 
constant c < 1 for all sufficiently large n

 T(n) = ( f (n))



Master Theorem (Reprise)

24

T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ), constant  > 0

 T(n) = (nlogba)

CASE 2: f (n) = (nlogba lgln), constant l  0

 T(n) = (nlogba lgl+1n)

CASE 3: f (n) = (nlogba +  ), constant  > 0,  
and regularity condition a f(n/b) ≤ c f(n), 
constant c < 1 for all sufficiently large n

 T(n) = ( f (n))

Merge sort: a = 2, b = 2  nlogba = nlog22 = n

 CASE  2 (l = 0)  T(n) = (n lg n)



Master Theorem (Proof)
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T(n) = a T(n/b) + f (n)

For case1：

For case3：

We have: We have:

Multiply 
both sides:

Try to solve case 2 in lab!



Binary Search
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Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.



Binary Search
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Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15



Binary Search
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Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15



Binary Search
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Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15



Binary Search
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Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15



Binary Search
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Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15



Binary Search
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Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15



Recurrence for Binary Search

33

T(n) = 1 T(n/2) +(1)

# subproblems

subproblem size

work dividing  
and combining



Recurrence for Binary Search
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T(n) = 1 T(n/2) +(1)

# subproblems

subproblem size

work dividing  
and combining

nlogba = nlog21  = n0  = 1  CASE 2 (l =0)

 T(n) = (lg n) .



Powering a Number
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Problem: Compute an, where nN.

Naive algorithm: (n).



Powering a Number
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an=
an/2 an/2

a(n–1)/2 a (n–1)/2 a

if n is even;  

if n is odd.

Problem: Compute an, where nN.

Naive algorithm: (n).

Divide-and-conquer algorithm:



Powering a Number

37

an=
an/2 an/2

a(n–1)/2 a (n–1)/2 a

if n is even;  

if n is odd.

T(n) = T(n/2) + (1)  T(n) = (lg n) .

Problem: Compute an, where nN.

Naive algorithm: (n).

Divide-and-conquer algorithm:



Fibonacci Numbers
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Recursive definition:

Fn =

1 if n = 0;

2 if n = 1;

Fn–1 + Fn–2 if n  2.

0 1 1 2 3 5 8 13 21 34 ...



Fibonacci Numbers
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Recursive definition:

Fn =

0

1

Fn–1 + Fn–2

if n = 0;  

if n = 1;

if n  2.

0 1 1 2 3 5 8 13 21 34 ...

Naive recursive algorithm: ( n)  

(exponential time), where  = (1+ 5)/2  
is the golden ratio.



Computing Fibonacci Numbers
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Bottom-up:

• Compute F0, F1, F2, …, Fn in order, forming  
each number by summing the two previous.

• Running time: (n).



Computing Fibonacci Numbers
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Bottom-up:

• Compute F0, F1, F2, …, Fn in order, forming  
each number by summing the two previous.

• Running time: (n).

Naive recursive squaring:

Fn = n/5 rounded to the nearest integer.

• Recursive squaring: (lg n) time.

• This method is unreliable, since floating-point  
arithmetic is prone to round-off errors.



Recursive Squaring
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Theorem:



Recursive Squaring
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Theorem:

Algorithm: Recursive squaring.

Time = (lg n) .



Recursive Squaring
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Theorem:

Base (n = 1):

Algorithm: Recursive squaring.

Time = (lg n) .

Proof of theorem. (Induction on n.)



Recursive Squaring
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Inductive step (n  2):



Or Equivalently

46



Matrix Multiplication
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n

cij =aik bkj

k=1

Input: A = [aij], B = [bij].

Output: C = [cij] = AB.
i, j = 1, 2,… , n.



Standard Algorithm
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for i  1 to n

do for j  1 to n

do cij 0

for k  1 to n

do cij  cij + aik bkj



Standard Algorithm
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for i  1 to n

do for j  1 to n

do cij 0

for k  1 to n

do cij  cij + aik bkj

Running time = (n3)



Divide-and-Conquer Algorithm
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IDEA:
nn matrix = 22 matrix of (n/2)(n/2) submatrices:

C =   A                B
r = ae + bg

s = af + bh

t = ce + dg

u = cf +dh

8 mults of (n/2)(n/2) submatrices 

4 adds of (n/2)(n/2) submatrices



Divide-and-Conquer Algorithm

51

IDEA:
nn matrix = 22 matrix of (n/2)(n/2) submatrices:

r = ae + bg

s = af + bh

t = ce + dh

u = cf +dg

8 mults of (n/2)(n/2) submatrices

4 adds of (n/2)(n/2) submatrices
^

recursive
C =   A                B



Analysis of D&C Algorithm
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# submatrices

submatrix size

work adding  
submatrices

T(n) = 8 T(n/2) +(n2)



Analysis of D&C Algorithm
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nlogba = nlog28 = n3  CASE 1  T(n) = (n3).

# submatrices

submatrix size

work adding  
submatrices

T(n) = 8 T(n/2) +(n2)



Analysis of D&C Algorithm
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nlogba = nlog28 = n3  CASE 1  T(n) = (n3).

No better than the ordinary algorithm.

# submatrices

submatrix size

work adding  
submatrices

T(n) = 8 T(n/2) +(n2)



Strassen’s Idea
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• Multiply 22 matrices with only 7 recursive mults.



Strassen’s Idea
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• Multiply 22 matrices with only 7 recursive mults.

P1 = a  ( f – h)

P2 = (a + b)  h

P3 = (c + d)  e

P4 = d (g –e)

P5 = (a + d)  (e + h)

P6 = (b – d)  (g +h)

P7 = (a – c)  (e + f )



Strassen’s Idea
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• Multiply 22 matrices with only 7 recursive mults.

P1 = a  ( f – h)

P2 = (a + b)  h

P3 = (c + d)  e

P4 = d (g –e)

P5 = (a + d)  (e + h)

P6 = (b – d)  (g +h)

P7 = (a – c)  (e + f )

r = P5 + P4 – P2 + P6  

s = P1 + P2

t = P3  + P4

u = P5 + P1 – P3 –P7



Strassen’s Idea
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7 mults, 18 adds/subs. 

Note: No reliance on  

commutativity of mult!

• Multiply 22 matrices with only 7 recursive mults.

P1 = a  ( f – h)

P2 = (a + b)  h

P3 = (c + d)  e

P4 = d (g –e)

P5 = (a + d)  (e + h)

P6 = (b – d)  (g +h)

P7 = (a – c)  (e + f )

r = P5 + P4 – P2 + P6  

s = P1 + P2

t = P3  + P4

u = P5 + P1 – P3 –P7



Strassen’s Idea
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• Multiply 22 matrices with only 7 recursive mults.

P1 = a  ( f – h)

P2 = (a + b)  h

P3 = (c + d)  e

P4 = d (g –e)

P5 = (a + d)  (e + h)

P6 = (b – d)  (g +h)

P7 = (a – c)  (e + f )

r = P5 + P4 – P2 + P6

= (a + d) (e + h)

+ d (g – e) – (a + b) h

+ (b – d) (g +h)

= ae + ah + de + dh

+ dg –de – ah – bh

+ bg + bh – dg – dh

= ae + bg



Strassen’s Algorithm
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1. Divide: Partition A and B into 
(n/2)(n/2) submatrices. Form terms  
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)(n/2) submatrices.



Strassen’s Algorithm
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1. Divide: Partition A and B into 
(n/2)(n/2) submatrices. Form terms  
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)(n/2) submatrices.

T(n) = 7 T(n/2) +(n2)



Analysis of Strassen
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T(n) = 7 T(n/2) +(n2)



Analysis of Strassen
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T(n) = 7 T(n/2) +(n2)

nlogba = nlog27  n2.81  CASE 1  T(n) = (nlg 7).



Analysis of Strassen
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T(n) = 7 T(n/2) +(n2)

nlogba = nlog27  n2.81  CASE 1  T(n) = (nlg 7).

The number 2.81 may not seem much smaller than  

3, but because the difference is in the exponent, the  

impact on running time is significant. In fact,  

Strassen’s algorithm beats the ordinary algorithm  

on today’s machines for n  32 or so.



Analysis of Strassen
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T(n) = 7 T(n/2) +(n2)

nlogba = nlog27  n2.81  CASE 1  T(n) = (nlg 7).

The number 2.81 may not seem much smaller than  

3, but because the difference is in the exponent, the  

impact on running time is significant. In fact,  

Strassen’s algorithm beats the ordinary algorithm  

on today’s machines for n  32 or so.

Best to date (of theoretical interest only): (n2.376…).



Conclusion
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• Divide and conquer is just one of several  powerful 
techniques for algorithm design.

• Divide-and-conquer algorithms can be  analyzed using 
recurrences and the master  method (so practice this math).

• The divide-and-conquer strategy often leads  to efficient
algorithms.
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Quick Sort



Quick Sort

• A popular sorting algorithm discovered by C.A.R. Hoare in 1962
– In many situations, it’s the fastest, in 𝑂(𝑛 log 𝑛) time (for in-memory sorting)

• Basic scheme
– Divide: partition an array into two subarrays around a pivot 𝑥 such that 

elements in left subarray ≤ 𝑥 ≤ the elements 

– Conquer: recursively to quicksort each of these subarrays

– Combine: trivial

• Some embellishments we can make
– selection of the pivot

– sorting of small partitions

68

 x x  x



Quick Sort (Pseudo-Code)
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QUICKSORT(A, p, r)

if p < r

then q  PARTITION(A, p, r)  

QUICKSORT(A, p, q–1) 

QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)



Partitioning

• Idea: Divide data into two groups, such that:

– All items with a key value higher than a specified amount (the 
pivot) are in one group

– All items with a lower key value are in another

• Applications: 

– Divide employees who live within 15 miles of the office with those 
who live farther away

– Divide households by income for taxation purposes

– Divide computers by processor speed

70



Partitioning

• Say I have 12 values:
– 175 192 95 45 115 105 20 60 185 5 90 180

• I pick a pivot=104, and partition (NOT sorting yet):
– 95 45 20 60 5 90 | 175 192 115 105 185 180

– Note: In the future the pivot will be an actual element
– Also: Partitioning need not maintain order of elements and usually 

won’t, although I did in this example

• The partition is the leftmost item in the right array:

– 95 45 20 60 5 90 | 175 192 115 105 185 180

• Which we return to designate where the division is located

71



Partitioning

• The partition process (two indexs)
– Start with two pointers: leftIndex initialized to one position to the left of the first cell; 

rightIndex to one position to the right of the last cell

– leftIndex moves to the right; rightIndex moves to the left

• Stopping and Swapping
– When leftIndex encounters an item smaller than the pivot, it keeps going; when it finds a 

larger item, it stops

– When rightIndex encounters an item larger than the pivot, it keeps going; when it finds a 
smaller item, it stops

– When the two indexs eventually meet, the process is complete

– When the two indexs stop, swap the two elements

72



Efficiency: Partitioning

• O(n) time 
– left starts at 0 and moves one-by-one to the right

– right starts at n-1 and moves one-by-one to the left

– When left and right cross, we stop.

• So we’ll hit each element just once

• Number of comparisons is n+1

• Number of swaps is worst case n/2
– Worst case, we swap every single time

– Each swap involves two elements

– Usually, it will be less than this
• Since in the random case, some elements will be on the correct side of the pivot 

73



Modified Partitioning

• In preparation for Quicksort:

– Choose our pivot value to be the rightmost element

– Partition the array around the pivot

– Ensure the pivot is at the location of the partition
• Meaning, the pivot should be the leftmost element of the right subarray

• Example: Unpartitioned 42 89 63 12 94 27 78 3 50 36

• Partitioned around Pivot: 3 27 12 36 63 94 89 78 42 50

• What does this imply about the pivot element after the partition? 

74



Placing the PIVOT

• Goal: Pivot must be in the leftmost position in the right subarray

– 3 27 12 36 63 94 89 78 42 50

• Our algorithm does not do this currently

• It currently will not touch the pivot

– left increments till it finds an element > pivot

– right decrements till it finds an element < pivot

– So the pivot itself won’t be touched, and will stay on the right:

– 3 27 12 63 94 89 78 42 50 36 
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Shifting the PIVOT

• We have this:

– 3 27 12 63 94 89 78 42 50 36

• Our goal is the position of 36

• Shift every element in the right subarray up (inefficient)

– 3 27 12 36 63 94 89 78 42 50

76



Swapping the PIVOT

• Just swap the leftmost with the pivot! Better 

– 3 27 12 36 94 89 78 42 50 63 

– We can do this because the right subarray is not in any particular order

• Just takes one more line to our Python method

– Basically, a single call to swap()

– Swaps A[end-1] (the pivot) with A[left] 

   (the partition index) 

77



Shall We Try It On An ARRAY?

• 1 7 5 3 6 9 0 4 8 2

• Let’s go step-by-step via Quick Sort

78



Shall We Try It On An ARRAY?

• 1 7 5 3 6 9 0 4 8 2

• Let’s go step-by-step via Quick Sort
– 1 0 2 3 6 9 7 4 8 5

– 0 1 | 2 | 3 4 5 7 6 8 9

– 0 | 1 | 2 | 3 4 | 5 | 7 6 8 9

– 0 | 1 | 2 | 3 | 4 | 5 | 7 6 8 | 9

– 0 | 1 | 2 | 3 | 4 | 5 | 7 6 | 8 | 9

– 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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BEST Case…

• We partition the array each time into two equal subarrays

• Say we start with array of size n = 2𝑖

• We recurse until the base case, 1 element

• Draw the tree
– First call -> Partition n elements, n operations

– Second calls -> Each partition n/2 elements, 2(n/2)=n operations

– Third calls -> Each partition n/4, 4(n/4) = n operations

– …

– (i+1)th calls -> Each partition n/2𝑖  = 1, 2𝑖(1) = n(1) = n ops 

• Total: (i+1)*n = (log n + 1)*n -> O(n log n) 
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The Very BAD Case….

• If the array is sorted

• Let’s see the problem:

– 0 10 20 30 40 50 60 70 80 90

• What happens after the partition? This:

– 0 10 20 30 40 50 60 70 80 90

• This is sorted, but the algorithm doesn’t know it.

• It will then call itself on an array of zero size (the left subarray) and an 
array of n-1 size (the right subarray).

• Producing:

– 0 10 20 30 40 50 60 70 80 90
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The Very BAD Case….

• In the worst case, we partition every time into an array of n-1 
elements and an array of 0 elements

• This yields O(𝑛2) time:
– First call: Partition n elements, n operations

– Second calls: Partition n-1 and 0 elements, n-1 operations

– Third calls: Partition n-2 and 0 elements, n-2 operations

– Draw the tree

• Yielding: Operations = n + n-1 + n-2 + … + 1 = n(n+1)/2 -> O(n2) 
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Summary

• What caused the problem was “blindly” choosing the pivot from the 
right end.

• In the case of a reverse sorted array, this is not a good choice at all

• Can we improve our choice of the pivot? Let’s choose the middle of 
three values 

83



Median-Of-Three Partitioning

• Every time you partition, choose the median value of the left, center and right 
element as the pivot

• Example: 
– 44 11 55 33 77 22 00 99 101 66 88

• Pivot: Take the median of the leftmost, middle and rightmost 
– 44 11 55 33 77 22 00 99 101 66 88 - Median: 44

• Then partition around this pivot:
– 11 00 33 22 44 77 55 99 101 66 88

• Increases the likelihood of an equal partition
– Also, it cannot possibly be the worst case 

• 49 
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How This Fixes The WORST Case?

• Here’s our array:

– 0 10 20 30 40 50 60 70 80 90

• Let’s see on the board how this fixes things

• In fact in a perfectly sorted array, we choose the middle element as 
the pivot!

– Which is optimal

– We get 𝑂(𝑁log𝑁)

• Vast majority of the time, if you use QuickSort with a Median-Of-
Three partition, you get 𝑂(𝑁log𝑁) behavior 
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One Final Optimization…

• After a certain point, just doing insertion sort is faster than 
partitioning small arrays and making recursive calls

• Once you get to a very small subarray, you can just sort with insertion 
sort

• You can experiment a bit with ‘cutoff’ values

– Knuth: n=9 
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Operation Count Estimates

• For QuickSort

• n=8: 30 comparisons, 12 swaps

• n=12: 50 comparisons, 21 swaps

• n=16: 72 comparisons, 32 swaps

• n=64: 396 comparisons, 192 swaps

• n=100: 678 comparisons, 332 swaps

• n=128: 910 comparisons, 448 swaps

• The only competitive algorithm is MergeSort

– But, takes much more memory like we said 
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Summary of Quicksort

• Quick sort operates in 𝑂(𝑁∗log𝑁) time (except when the simpler version is 
applied to already-sorted data).

• Subarrays smaller than a certain size (the cutoff) can be sorted by a method other 
than quicksort.

• The insertion sort is commonly used to sort subarrays smaller than the cutoff.

• The insertion sort can also be applied to the entire array, after it has been sorted 
down to a cutoff point by quicksort.
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