DSAA 2043 | Design and Analysis of Algorithms

Dynamic Programming (I)

Fibonacci Numbers
 Matrix chain multiplication
 Knapsack Problem
 RNA secondary structure

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

Fibonacci Numbers

Definition

$$f(n) = \begin{cases} 0 & if \quad n = 0\\ 1 & if \quad n = 1\\ F(n-1) + F(n-2) & if \quad n > 1 \end{cases}$$

• The first several numbers are:

-0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ...

- Question: Given n, how to compute F(n)?
 - Recursion

Leonardo Fibonacci

Fibonacci Numbers – Naïve Algorithm

• Computing the nth Fibonacci number recursively:

$$f(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \end{cases} \text{ code ...} \\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases} \text{ code ...} \qquad \text{def Fib(n):} \\ \text{if } (n <= 1) \\ \text{return n;} \\ \text{else} \\ \text{return Fib(n-1) + Fib(n-2);} \end{cases}$$

Fibonacci Numbers – Naïve Algorithm

• Running time

T(n) = T(n-1) + T(n-2) + O(1)→ $T(n) \ge T(n-1) + T(n-2)$ for $n \ge 2$ → $T(n) \ge 2T(n-2)$

- What is the solution to this?
 - Clearly it is $O(2^n)$, but this is not tight.
 - A lower bound is $\Omega(2^{n/2})$.
 - You should notice that T(n) grows as fast as the Fibonacci numbers F(n), so in fact T(n) = $\Theta(F(n))$.

Fibonacci Numbers – Naïve Algorithm

• What's going on with this naïve approach?

- Remember solutions of all the sub-problems
- Trade space for time

Sub-problem	Opt Solution
fib(0)	0
fib(1)	1
fib(2)	1
fib(3)	2
fib(4)	3

Fibonacci Numbers

– Computing the nth Fibonacci number using as follow:

0 1 1 ...
$$F(n-2)$$
 $F(n-1)$ $F(n)$

- Efficiency:
 - Time O(n)
 - Space $\dot{O}(n) \rightarrow$ can be improved to O(1)

This is an example of dynamic programming 🙂

Dynamic Programming

- Ensure all needed recursive calls are already computed and memorized
- ➔ a good schedule of computation
- (Optional) Reused space to store previous recursive call results
- ➔ Arrive at the same efficient (special) solution for Fib()

"Those who cannot remember the past are condemned to repeat it." — Dynamic Programming

Dynamic Programming

- Dynamic Programming is an algorithm design technique for *optimization problems:* often minimizing or maximizing.
- Like divide and conquer, DP solves problems by combining solutions to sub-problems.
- Unlike divide and conquer, sub-problems are not independent.
 - DP breaks up a problem into a series of overlapping sub-problems.
 - i.e, Both F[i+1] and F[i+2] directly use F[i]. And lots of different F[i+x] indirectly use F[i].

- 1. Recursion: Divide the problem into sub-problems, so that their solutions can be combined into a solution to the problem.
- 2. Tabulation of sub-problems: Solve each sub-problem just once and save its solution in a "look-up" table.

Dynamic Programming

- The term Dynamic Programming comes from Control Theory, not computer science. Programming refers to the use of tables (arrays) to construct a solution.
- In Dynamic Programming, we usually reduce time by increasing the amount of space.
- We solve the problem by solving sub-problems of increasing size and saving each optimal solution in a table (usually).
- The table is then used for finding the optimal solution to larger problems.
- Time is saved since each sub-problem is solved only once.

Two Ways to Think and Implement DP

- Top down:
- Think of it like a recursive algorithm.
- To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 - etc..
- The difference from divide and conquer:
 - Keep track of what small problems you've already solved to prevent resolving the same problem twice.
 - Aka, "memoization"

- Bottom up:
- For Fibonacci:
- Solve the small problems first
 - fill in F[0],F[1]
- Then bigger problems
- ...
- Then bigger problems
 - fill in F[n-1]
- Then finally solve the real problem.
 - fill in F[n]

Example of Top-Down Fibonacci

```
define a global list F = [0,1,None, None, ..., None]
def Fibonacci(n):
    if F[n] != None:
        return F[n]
else:
        F[n] = Fibonacci(n-1) + Fibonacci(n-2)
    return F[n]
```


Memoization Visualization

Dynamic Programming

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

- Underpins many optimization problems, e.g.,
 - Matrix Chaining optimization
 - Longest Common Subsequence
 - 0-1 Knapsack Problem
 - Shortest path
- Next we will give many example problems to help understand the basic idea of Dynamic Programming.

Recipe for Applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up.

Matrix Chain Multiplication

- -C = A * B
- -A is $d \times e$ and B is $e \times f$
- $-O(d \cdot e \cdot f)$ time

$$C[i,j] = \sum_{k=0}^{e-1} A[i,k] * B[k,j]$$

$$d \to d$$

Matrix Chain Multiplication

• Matrix Chain Multiplication:

- Compute $A = A_0 * A_1 * ... * A_{n-1}$
- $-\,A_i\,is\,d_i\times\,d_{i^{+1}}$
- Problem: How to parenthesize?
- Example
 - B is 3 \times 100
 - C is 100 imes 5
 - D is 5 \times 5
 - (B*C)*D takes 1500 + 75 = 1575 ops
 - $(3 \times 100 \times 5) + (3 \times 5 \times 5)$
 - B*(C*D) takes 1500 + 2500 = 4000 ops

Enumeration Approach for MCM

- Try all possible ways to parenthesize $A=A_0^*A_1^*...^*A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best
- Running time:
 - The number of parenthesizations is equal to the number of binary trees with n-1 nodes
 - This is **exponential**!
 - It is called the Catalan number, and it is almost 4^n .
 - This is a terrible algorithm!

Greedy Approach for MCM

- Idea #1: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 \times 11
 - B is 11 \times 9
 - C is 9 \times 100
 - D is 100 \times 99
 - Greedy idea #1 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.

- The optimal solution can be defined in terms of optimal sub-problems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiplication is at index k:

 $(A_0^*...^*A_k)^*(A_{k+1}^*...^*A_{n-1}).$

- Let us consider all possible places for that final multiplication:
 - There are *n*-1 possible *splits*. Assume we know the minimum cost of computing the matrix product of each combination $A_0...A_i$ and $A_{i+1}...A_{n-1}$. Let's call these $N_{0,i}$ and $N_{i+1,n-1}$.
- Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix, and the final result will be a $d_0 \times d_n$.

– Define the following:

$$N_{0,n-1} = \min_{0 \le k < n-1} \{ N_{0,k} + N_{k+1,n-1} + d_0 d_{k+1} d_n \}$$

- Then the optimal solution $N_{0,n-1}$ is the sum of two optimal sub-problems, $N_{0,k}$ and $N_{k+1,n-1}$ plus the time for the last multiplication.

• Define **sub-problems**:

- Find the best parenthesization of an arbitrary set of consecutive products: $A_i^*A_{i+1}^*...^*A_j$.
- Let N_{i,i} denote the **minimum** number of operations done by this sub-problem.
 - Define $N_{k,k} = 0$ for all k.
- The optimal solution for the whole problem is then $N_{0,n-1}$.

• The characterizing equation for N_{i,i} is:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

- Note that, for example $N_{2,6}$ and $N_{3,7}$, both need solutions to $N_{3,6}$, $N_{4,6}$, $N_{5,6}$, and $N_{6,6}$. Solutions from the set of no matrix multiplies to four matrix multiplies.
 - This is an example of high sub-problem overlap, and clearly pre-computing these will significantly speed up the algorithm.

 We could implement the calculation of these N_{i,j}'s using a straightforward recursive implementation of the equation (aka not pre-compute them).

```
Algorithm RecursiveMatrixChain(S, i, j):
```

Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal parenthesization of S
if i=j

then return 0

for $k \leftarrow i$ to j do

 $N_{i,j} \leftarrow \min\{N_{i,j},$

RecursiveMatrixChain(S, i,k) + RecursiveMatrixChain(S, k+1,j) + $d_i d_{k+1} d_{i+1}$ }

return N_{i,i}

Subproblem Overlap

Dynamic Programming Algorithm

- High sub-problem overlap, with independent sub-problems indicate that a dynamic programming approach may work.
- Construct optimal sub-problems "bottom-up." and remember them.
- N_{i,i}'s are easy, so start with them
- Then do problems of *length* 2,3,... sub-problems, and so on.
- Running time: O(n³)

Dynamic Programming Algorithm

```
Algorithm matrixChain(S):
    Input: sequence S of n matrices to be multiplied
    Output: number of operations in an optimal parenthesization of S
    for i \leftarrow 1 to n - 1 do
        N_{i,i} \leftarrow \mathbf{0}
    for b \leftarrow 1 to n - 1 do
        { b = j - i is the length of the problem }
        for i \leftarrow 0 to n - b - 1 do
            j \leftarrow i + b
             N_{i,i} \leftarrow +\infty
             for k \leftarrow i to j - 1 do
                 N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}
    return N<sub>0,n-1</sub>
```

Algorithm Visualization

- The bottom-up construction fills in the N array by diagonals
- N_{i,j} gets values from previous entries in i-th row and j-th column
- Filling in each entry in the N table takes O(n) time.
- Total run time: O(n³)
- Getting actual parenthesization can be done by remembering "k" for each N entry

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Algorithm Visualization

A₀: 30 X 35; A₁: 35 X15; A₂: 15X5;
A₃: 5X10; A₄: 10X20; A₅: 20 X 25

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

$$N_{1,4} = \min\{N_{1,1} + N_{2,4} + d_1d_2d_5 = 0 + 2500 + 35 * 15 * 20 = 13000, N_{1,2} + N_{3,4} + d_1d_3d_5 = 2625 + 1000 + 35 * 5 * 20 = 7125, N_{1,3} + N_{4,4} + d_1d_4d_5 = 4375 + 0 + 35 * 10 * 20 = 11375 \} = 7125$$

Algorithm Visualization

 $(A_0^*(A_1^*A_2))^*((A_3^*A_4)^*A_5)$

• Some final thoughts

- –We reduced replaced a $O(2^n)$ algorithm with a $O(n^3)$ algorithm.
- –While the generic top-down recursive algorithm would have solved $O(2^n)$ sub-problems, there are $\Theta(n^2)$ sub-problems.
 - Implies a high overlap of sub-problems.
- -The sub-problems are independent:
 - Solution to $A_0A_1...A_k$ is independent of the solution to $A_{k+1}...A_n$.

Matrix Chain Multiplication Summary

- Determine the cost of each pair-wise multiplication, then the *minimum* cost of multiplying three consecutive matrices (2 possible choices), using the pre-computed costs for two matrices.
- Repeat until we compute the minimum cost of all *n* matrices using the costs of the minimum *n*-1 matrix product costs.
 - n-1 possible choices.

The 0/1 Knapsack Problem

- Given: A set S of *n* items (one piece each), with each item *i* having
 - $-w_i$ a positive weight
 - b_i a positive benefit
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are **not** allowed to take fractional amounts, then this is the **0/1 knapsack problem**.
 - In this case, we let T denote the set of items we take

– Objective: maximize
$$\sum_{i \in T} b_i$$

- Constraint: $\sum_{i \in T} w_i \le W$

Linear Programming formulation

- Given: A set S of n items, with each item i having
 - b_i a positive "benefit"
 - w_i a positive "weight"
- Goal: Choose items with maximum total benefit but with weight at most W.

_____•

First Attempt

- S_k : Set of items numbered 1 to k.
- Define B[k] = best selection from S_k .
- Problem: does not have sub-problem optimality:
 - Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of (benefit, weight) pairs and total weight W = 20

Second Attempt

- S_k: Set of items numbered 1 to k.
- Define B[k,w] to be the best selection from S_k with weight at most w
- This does have sub-problem optimality.

$$B[k,w] = \begin{cases} B[k-1,w] & \text{if } w_k > w \\ \max\{B[k-1,w], B[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$$

- I.e., the best subset of S_k with weight at most *w* is either:
 - the best subset of S_{k-1} with weight at most w or
 - the best subset of S_{k-1} with weight at most $w-w_k$ plus item k

item weight value

\$12

\$10

\$20

\$15

2

1

3

2

1

2

3

4

Knapsack of capacity W = 5 $w_1 = 2, v_1 = 12$ $w_2 = 1, v_2 = 10$

 $w_3 = 3$, $v_3 = 20$ $w_4 = 2$, $v_4 = 15$

Max item allowed	Max Weight					
	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0	10	12	22	30	32
4	0	10	15	25	30	37

$$B[k,w] = \begin{cases} B[k-1,w] & \text{if } w_k > w \\ \max\{B[k-1,w], B[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$$

港科技大学(广州)

'HE HONG KONG JNIVERSITY OF SCIENCE AND FECHNOLOGY (GUANGZHOU) • Since B[k,w] is defined in terms of B[k-1,*], we can use two arrays of instead of a matrix.

• Running time is **O**(nW).

Algorithm

- Not a polynomial-time algorithm since W may be large.
- Called a pseudo-polynomial time algorithm.

Algorithm

```
Input: set S of n items with benefit b_i
and weight w_i; maximum weight W
Output: benefit of best subset of S with weight at most W
let A and B be arrays of length W + 1
for w \leftarrow 0 to W do
    B[w] \leftarrow 0
for k \leftarrow 1 to n do
    copy array B into array A
    for w \leftarrow w_k to W do
        if A[w-w_k] + b_k > A[w]
then
            B[w] \leftarrow A[w - w_k] + b_k
return B[W]
```


RNA secondary structure

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

- RNA: String B = b1b2...bn over alphabet { A, C, G, U }.
 - e.g. GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA
- Secondary structure: RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

RNA secondary structure prediction

- For a given RNA sequences B, Finding a set of pairs S={(b_i,b_j)} that satisfy:
 - [Watson-Crick complement] $(b_i, b_j) \in \{A-U, U-A, C-G, G-C\}$.
 - [No sharp turns] If (b_i, b_j) , then i < j 4.
 - [Non-crossing] If (b_i,b_j) and (b_k, b_l) are two pairs in S, then we cannot have i < k < j < l.

RNA secondary structure prediction

• RNA tends to form the secondary structure with more base pairs.