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e Definition

f(n)=+

' Fibonacci Numbers

-

0 if n=0
1 if n=1

Fn-)+F(n-=-2) if n>1

* The first several numbers are:
-0,1,1,2, 3,5, 8,13, 21, 34, 55, 89, 144 ...

e Question: Given n, how to compute F(n)?

— Recursion
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' Fibonacci Numbers — Naive Algorithm

e Computing the nt" Fibonacci number recursively:

fn)=-

r

0
1

if n=0

if n=1 ||m

F(n-1)+F(n-2) if n>1
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def Fib(n):
if (n<=1)
return n;

else
return Fib(n - 1) + Fib(n - 2);

F(3)

T

F(2)

F(1)

F(1)

F(0)




' Fibonacci Numbers — Naive Algorithm W i

* Running time

T(n) =T(n-1) + T(n-2) + O(1)
= T(n) >T(n-1) + T(n-2) for n >2
= T(n) > 2T(n-2)

* What is the solution to this?
— Clearly it is O(2"), but this is not tight.
— A lower bound is QQ(2"/2).

— You should notice that T(n) grows as fast as the Fibonacci numbers F(n), so in
fact T(n) = ©(F(n)).



' Fibonacci Numbers — Naive Algorithm W i

* What'’s going on with this naive approach?

AN

L Fib(2) T Fib(1)

VANER I VAN

" Fib(1)  Fib(0)/ \\ Fib(1)  Fib(0) /

-

L
Fib(2) T Fib(1)
/, + \\\
/N

" Fib(1)  Fib(0)

____________

U That’s a lot of repeated computation!



' Memoization

* Memoization frees us from redundant calculations ©
— Remember solutions of all the sub-problems
— Trade space for time

fib(5)

fib(1)

fib(0)

Sub-problem | Opt Solution
fib(0) 0
fib(1) 1
fib(2) 1
fib(3) 2
fib(4) 3
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— Computing the nt Fibonacci number using as follow:

— F(0)=0
- F1)=1 def fasterFibonacci(n):
- F(2)=1+0=1 F = [0, 1, None, None, .., None ]
- . ||m \\ F has length n + 1
— F(n-2) = for 1 = 2, .., n:
— F(n_]_): F[1i] = F[i-1] + F[1-2]
— F(n) = F(n-1) + F(n-2) return F[n]
0 1 1 .. .| F(n-2) |[F(n-1) | F(n)
 Efficiency:
— Time — O(n)

— Space — O(n) =» can be improved to O(1)

This is an example of dynamic programming ©



' Dynamic Programming

= |deas

s Ensure all needed recursive calls are
already computed and memorized

=» a good schedule of computation

= (Optional) Reused space to store
previous recursive call results

=>» Arrive at the same efficient (special)
solution for Fib()

o

Uo
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fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)




“Those who cannot remember the
past are condemned to repeat Iit. ”

— Dynamic Programming
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* Dynamic Programming is an algorithm design technique for
optimization problems: often minimizing or maximizing.

* Like divide and conquer, DP solves problems by combining solutions
to sub-problems.

* Unlike divide and conquer, sub-problems are not independent.

— DP breaks up a problem into a series of overlapping sub-problems.
* i.e, Both F[i+1] and F[i+2] directly use F[i]. And lots of different F[i+x] indirectly use F[i].
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1. Recursion: Divide the problem into sub-problems, so that their
solutions can be combined into a solution to the problem.

2. Tabulation of sub-problems: Solve each sub-problem just once and
save its solution in a “look-up” table.
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* The term Dynamic Programming comes from Control Theory, not computer
science. Programming refers to the use of tables (arrays) to construct a solution.

* In Dynamic Programming, we usually reduce time by increasing the amount of
space.

* We solve the problem by solving sub-problems of increasing size and saving each
optimal solution in a table (usually).

* The table is then used for finding the optimal solution to larger problems.

* Time is saved since each sub-problem is solved only once.



A —

' Two Ways to Think and Implement DP W s

* Top down: * Bottom up:

* Think of it like a recursive algorithm. * For Fibonacci:

* Solve the small problems first
e fill in F[O],F[1]

* Then bigger problems

* The difference from divide and
conquer: * Then bigger problems
 fill in F[n-1]

* Then finally solve the real problem.



Example of Top-Down Fibonacci

o
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o
define a global list F = [0,1,None, None, .., None]
def Fibonacci (n) :
if F[n] != None:
return F[n]
else:
F[n] Fibonacci(n-1) + Fibonacci(n-2)
return F[n]

Computing Fibonacci Numbers
Pt B
lIIIl__.l
0008 j—
o ':-"f
s
izati 0.006 -
Memoization: Keeps . o
track (in F) of the E .
stuff you've already =
done.
0002

= Maive Fibonacci

=== faster Fibonacci, bottom-up
0000

faster Fibonacci, top-down
T T T T
15 20 25 3o
n

[




' Memoization Visualization i

&

Collapse
repeated nodes
and don’t do the

same work
twice!

lllIllllll '

EEEN
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* Underpins many optimization problems, e.g.,
— Matrix Chaining optimization

— Longest Common Subsequence

— 0-1 Knapsack Problem

— Shortest path

* Next we will give many example problems to help understand the
basic idea of Dynamic Programming.



' Recipe for Applying Dynamic Programming W s s

ldentify optimal substructure.

Find a recursive formulation for the value of the optimal
solution.

Use dynamic programming to find the value of the optimal
solution.

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual solution.

If needed, code this up.

17



B FEHBEREZ (M
= THE HONG KONG

LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

' Matrix Chain Multiplication

* Review: Matrix Multiplication.
-C=A"B
—Aisd XeandBise x f

— O(d-e-f) time

Clirjl = ) Ali,K] * BIk,j]
k=0

1




' Matrix Chain Multiplication

B FEREARE(M

* Matrix Chain Multiplication:
— Compute A=A,*A *... %A, ;
_Ai |S di X di+1
— Problem: How to parenthesize?
* Example
—Bis3 X 100
—Cis100 X 5
—Dis5 X5

— (B*C)*D takes 1500 + 75 = 1575 ops
e (3x100x5)+(3x5x5)

— B*(C*D) takes 1500 + 2500 = 4000 ops



' Enumeration Approach for MCM W i

* Matrix Chain Multiplication Alg.:
— Try all possible ways to parenthesize A=A *A,*...*A_,

— Calculate number of ops for each one

— Pick the one that is best

* Running time:

— The number of parenthesizations is equal to the number of binary trees with

n — 1 nodes

— This is exponential!

— |t is called the Catalan number, and it is almost 4".

— This is a terrible algorithm!
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* |dea #1: repeatedly select the product that uses the fewest operations.
* Counter-example:

— Ais101 X 11

—Bis1ll X 9

— Cis9 X 100

— Dis100 X 99

— Greedy idea #1 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
— (A*B)*(C*D) takes 9999+89991+89100=189090 ops

* The greedy approach is not giving us the optimal value.



' Dynamic Programming Approach for MCM W s

* The optimal solution can be defined in terms of optimal sub-problems

— There has to be a final multiplication (root of the expression tree) for the
optimal solution.

— Say, the final multiplication is at index k:
(AO*“'*Ak)*(Ak+1*"'*An-1)'

* Let us consider all possible places for that final multiplication:

— There are n-1 possible splits. Assume we know the minimum cost of
computing the matrix product of each combination A,...A, and A,,...A ;. Let’s
call these Ng; and N, q 4.

* Recall that A, is a d; X d,,; dimensional matrix, and the final result will
bead, X d,.
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' Dynamic Programming Approach for MCM

— Define the following:

min {Ngy + Nyy1n—1 + dodi+1dn}

Na., 1 =
On-1 0<k<n-—1

- Then the optimal solution N, ; is the sum of two optimal sub-problems, N,
and N, .1 plus the time for the last multiplication.



' Dynamic Programming Approach for MCM W s s

* Define sub-problems:

— Find the best parenthesization of an arbitrary set of consecutive products:

AFALLF LA

— Let N;; denote the minimum number of operations done by this sub-problem.

* Define Ny, = O forall k.

— The optimal solution for the whole problem is then N ;.
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' Dynamic Programming Approach for MCM

* The characterizing equation for N is:

= min

N; ; = min
1<k<]j

j WNik + Niyrj + didyy1dj41}

* Note that, for example N, c and N, ,, both need solutions to N3¢, N, 5, N5 5, and
Ng 6. Solutions from the set of no matrix multiplies to four matrix multiplies.

— This is an example of high sub-problem overlap, and clearly pre-computing these will
significantly speed up the algorithm.
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* We could implement the calculation of these N; s using a

straightforward recursive implementation of the equation (aka not
pre-compute them).

Algorithm RecursiveMatrixChain(s, 1, j):
Input:
Output:
If =]
then return 0
for k <~ 1to | do

<~ min{ RecursiveMatrixChain(s, 1 ,k)
RecursiveMatrixChain(S, k+1,)) }

return
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' Subproblem Overlap

Nz’,j — min. {Nz,k

1<k<J

N,
. -’
_______

How to schedule the sub-problems?



' Dynamic Programming Algorithm W s

* High sub-problem overlap, with independent sub-problems indicate
that a dynamic programming approach may work.

* Construct optimal sub-problems “bottom-up.” and remember them.
* N;;'s are easy, so start with them
* Then do problems of length 2,3, ... sub-problems, and so on.

* Running time: O(n3)



' Dynamic Programming Algorithm W s

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal parenthesization of S
fori< 1ton—1do
N« 0
forb« 1ton—-1do
{ b= —1listhe length of the problem }
fori<Oton—-b-1 do

jei+b
N j ¢ 400
fork«ito]—1do
N min{Ng N+ N+ didie do}

return N,




B FEHBEREZ (M
= THE HONG KONG

LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

' Algorithm Visualization

* The bottom-up construction fills in the N array by
diagonals

answer

n-1

* N;; gets values from previous entries in i-th row and
j-th column

* Filling in each entry in the N table takes O(n) time.

* Total run time: O(n3)

» Getting actual parenthesization can be done by
remembering “k” for each N entry

Ni = min,{N,;,

I<k<j

J k+ Nigrj +didyy1djq}




- Algorithm Visualization -
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* Ay: 30 X 35; A;: 35 X15; A,: 15X5;
A;: 5X10; A,:10X20; Ag: 20X 25

N;; = ilg}cigj{Ni,k + Ngiq,j + didgs1dj41}

15750 | 7875 | 9375 | 11875 | 15125

N1 4 = min{
Nl,l + N2’4 + dledS =04 2500+ 35%15%20 = 13000,

Ny, + Ny 4 + dydsds = 2625 + 1000 + 35 * 5 * 20 = 7125,

N3+ Nyg + didads = 4375 + 0 4 35 % 10 * 20 = 11375
}
s |3 = 7125

0

0 2625 . 10,500

0 750 2,500
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(AO*(Al*AZ)) *((AB*A4)*A5)

15750 | 7875 9375 | 11875 | 15125

0| 2625 . 10,500
0 s0

2,500 | 5375

1,000 | 3,500

0




' Matrix Chain Multiplication Wi i

* Some final thoughts

—We reduced replaced a O(2") algorithm with a ®(n3)
algorithm.

—While the generic top-down recursive algorithm would
have solved O(2") sub-problems, there are ®(n?) sub-

problems.
* Implies a high overlap of sub-problems.

—The sub-problems are independent:
* Solution to AjA,...A, is independent of the solution to A,;...A,.



' Matrix Chain Multiplication Summary W S e

* Determine the cost of each pair-wise multiplication, then the
minimum cost of multiplying three consecutive matrices (2 possible
choices), using the pre-computed costs for two matrices.

e Repeat until we compute the minimum cost of all n matrices using
the costs of the minimum n-1 matrix product costs.

— n-1 possible choices.



' The 0/1 Knapsack Problem W e

* Given: A set S of n items (one piece each), with each item i having
— W; - a positive weight

— b, - a positive benefit

e Goal: Choose items with maximum total benefit but with weight at
most W.

* If we are not allowed to take fractional amounts, then this is the 0/1
knapsack problem.
— In this case, we let T denote the set of items we take

— Objective: maximize Zb"

IET

Linear Programming formulation

— Constraint: ZW" <w

IET



' Example

* Given: A set S of n items, with each item i having

— b, - a positive “benefit”

— W, - a positive “weight”

* Goal: Choose items with maximum total benefit but with weight at most W.

ltems:

Weight:
Benefit:

4 in
S20

21in
S3

2in
S6

6in
S25

21in
S80

“knapsack”

box of width 9in
Solution:
e item 5 (580, 2 in)

e item 3 (56, 2 in)
e item 1 (520, 4 in)
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* S.: Set of items numbered 1 to k.
* Define B[k] = best selection from S,.

* Problem: does not have sub-problem optimality:

— Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of
(benefit, weight) pairs and total weight W = 20

[(3.2 3.4 8, 4.3

(3.2 (5.4) (8.5) (10.9)
Best for Sc: (109

-t} 20 F1
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S,: Set of items numbered 1 to k.

Define B[k,w] to be the best selection from S, with weight at most w

This does have sub-problem optimality.

_ Blk —1,w] ifw, >w
Blk,wl = {max{B[k —1,w], Blk —1,w — wy | + by} else

l.e., the best subset of S, with weight at most w is either:
— the best subset of S, ; with weight at most w or
— the best subset of S, ; with weight at most w—w, plus item k



' Knapsack Example

item weight value

1

2
3
4

2 S12
1 $10
3 S20
2 S15
Blk,w] =

|
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Knapsack of capacity W=5

wy=2,v,=12 w,=1,v,=10

W3=3, V3=20 W4 =2, V4= 15

0 0 0

1 0 0 12

2 0 10 12

3 0 10 12

4 0 10 15
Blk —1,w]

Max Weight

Max it
o T —
0 0 0 0

12
22
22
25

12
22
30
30

12
22
32
37

ifWk > W

max{ B[k — 1,w], Blk — 1,w — wy]| + by}

else
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. C . . . 1 0% Algorithm
Since B[k,w] is defined in terms of B[k—1,%*], \nput: set S of  items with bengfit b

we can use two arrays of instead of a matrix. and weight w;; maximum weight W

Output: benefit of best subset of S with
weight at most W

let A and B be arrays of length W + 1

 Running time is O(nW). for w <— 0 to W do
Blw] « 0

fork <~ 1tondo

* Not a polynomial-time algorithm since W copy array B Into array A
for w < w, to W do
may be large. if Afw-wiJ + by > A[w]
then
B[w] « Alw-w,] + b

* Called a pseudo-polynomial time algorithm. return B[W]
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' RNA secondary structure W s iem s

* RNA: String B =b1b2...bn over alphabet{ A, C, G, U }.
—e.g. GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

e Secondary structure: RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for

understanding behavior of molecule.

C—A
e AN
A A,
N /
A .- U C—10~C
base l / \
L :sx G 1] A A G
\ / =
U ¢ A—U—U A
T~
base pair G
- \C G C F |
r : : \ G
. " /
C C C C A G ..
~N S |
G

41



' RNA secondary structure prediction W i

* For a given RNA sequences B, Finding a set of pairs S={(b,,b;)} that
satisfy:

— [Watson—Crick complement] (b;,b;) € {A-U, U-A, C-G, G—C}.

— [No sharp turns] If (b;,b;), theni < j — 4.

— [Non-crossing] If (b,b;) and (b, b)) are two pairs in S, then we cannot have i <
k<j<l.

42



' RNA secondary structure prediction W i

* RNA tends to form the secondary structure with more base pairs.

43
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