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Fibonacci Numbers 

• Definition

• The first several numbers are:
– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 , 144 …

• Question: Given n, how to compute F(n)?
– Recursion
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Leonardo
Fibonacci



Fibonacci Numbers – Naïve Algorithm

• Computing the nth Fibonacci number recursively:
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  F(n)

            F(n-1)             +             F(n-2)

F(n-2)     +     F(n-3)          F(n-3)     +     F(n-4)

def Fib(n): 
  if (n <= 1)
    return n;
  else
    return Fib(n - 1) + Fib(n - 2);

F(3)

F(2) F(1)

F(1) F(0)

code …



Fibonacci Numbers – Naïve Algorithm 

• Running time

• What is the solution to this?
– Clearly it is O(2n), but this is not tight.

– A lower bound is (2n/2).

– You should notice that T(n) grows as fast as the Fibonacci numbers F(n), so in 
fact T(n) = (F(n)).
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T(n) = T(n-1) + T(n-2) + O(1)

T(n) ≥ T(n-1) + T(n-2) for n ≥2

T(n) ≥ 2T(n-2)    



Fibonacci Numbers – Naïve Algorithm 

• What’s going on with this naïve approach?
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Fib(5)
    +

Fib(4)
    +

Fib(3)
    +

Fib(3)
    +

Fib(2)
    +

Fib(2)
    +

Fib(1)
    

Fib(2)
    +

Fib(1)
    

Fib(1)
    

Fib(0)
    

Fib(1)
    

Fib(0)
    

Fib(1)
    

Fib(0)
    

That’s a lot of repeated computation!



Memoization

• Memoization frees us from redundant calculations ☺
– Remember solutions of all the sub-problems

– Trade space for time
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Sub-problem Opt Solution

fib(0) 0

fib(1) 1

fib(2) 1

fib(3) 2

fib(4) 3

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(5)



Fibonacci Numbers

– Computing the nth Fibonacci number using as follow:
– F(0) = 0
– F(1) = 1 
– F(2) = 1+0 = 1
–   …    
– F(n-2) = 
– F(n-1) = 
– F(n) = F(n-1) + F(n-2)

• Efficiency:
– Time – O(n)
– Space – O(n) ➔ can be improved to O(1)
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def fasterFibonacci(n):

F = [0, 1, None, None, …, None ] 
\\ F has length n + 1

for i = 2, …, n:

F[i] = F[i-1] + F[i-2]

return F[n]

code …

This is an example of dynamic programming ☺



Dynamic Programming
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◼ Ideas

◼ Ensure all needed recursive calls are 
already computed and memorized

 ➔ a good schedule of computation

◼ (Optional) Reused space to store 
previous recursive call results 

➔ Arrive at the same efficient (special) 
solution for Fib()

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(5)



“ Those who cannot remember the 
past are condemned to repeat it. ”

— Dynamic Programming 
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Dynamic Programming

• Dynamic Programming is an algorithm design technique for 
optimization problems: often minimizing or maximizing.

• Like divide and conquer, DP solves problems by combining solutions 
to sub-problems.

• Unlike divide and conquer, sub-problems are not independent.
– DP breaks up a problem into a series of overlapping sub-problems.

• i.e, Both F[i+1] and F[i+2] directly use F[i]. And lots of different F[i+x] indirectly use F[i].
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Main Ideas

1. Recursion: Divide the problem into sub-problems, so that their 
solutions can be combined into a solution to the problem. 

2. Tabulation of sub-problems: Solve each sub-problem just once and 
save its solution in a “look-up” table.
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Dynamic Programming

• The term Dynamic Programming comes from Control Theory, not computer 
science. Programming refers to the use of tables (arrays) to construct a solution.

• In Dynamic Programming, we usually reduce time by increasing the amount of 
space.

• We solve the problem by solving sub-problems of increasing size and saving each 
optimal solution in a table (usually). 

• The table is then used for finding the optimal solution to larger problems. 

• Time is saved since each sub-problem is solved only once.
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Two Ways to Think and Implement DP

• Top down:
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• For Fibonacci:

• Solve the small problems first

• fill in F[0],F[1]

• Then bigger problems

• fill in F[2]

• …

• Then bigger problems

• fill in F[n-1]

• Then finally solve the real problem.

• fill in F[n]

• Bottom up:

• Think of it like a recursive algorithm.

• To solve the big problem:
• Recurse to solve smaller problems

• Those recurse to solve smaller problems
• etc..

• The difference from divide and 
conquer:
• Keep track of what small problems 

you’ve already solved to prevent re-
solving the same problem twice.

• Aka, “memoization”



Example of Top-Down Fibonacci
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define a global list F = [0,1,None, None, …, None]

def Fibonacci(n):

if F[n] != None:

return F[n]    

else:

F[n] = Fibonacci(n-1) + Fibonacci(n-2)

return F[n]



Memoization Visualization
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Dynamic Programming

• Underpins many optimization problems, e.g., 
– Matrix Chaining optimization

– Longest Common Subsequence

– 0-1 Knapsack Problem

– Shortest path

• Next we will give many example problems to help understand the 
basic idea of Dynamic Programming. 
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Recipe for Applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of the optimal 
solution.

• Step 3: Use dynamic programming to find the value of the optimal 
solution.

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual solution.

• Step 5: If needed, code this up.
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Matrix Chain Multiplication

• Review: Matrix Multiplication.
– C = A*B

– A is d × e and B is e × f

– O(def ) time
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A C

B

d d

f

e

f

e

i

j

i,j

𝐶[𝑖, 𝑗] = ෍

𝑘=0

𝑒−1

𝐴[𝑖, 𝑘] ∗ 𝐵[𝑘, 𝑗]



Matrix Chain Multiplication

• Matrix Chain Multiplication:
– Compute A=A0*A1*…*An-1

– Ai is di × di+1

– Problem: How to parenthesize?

• Example
– B is 3 × 100

– C is 100 × 5

– D is 5 × 5

– (B*C)*D takes 1500 + 75 = 1575 ops
• (3 x 100 x 5) + (3 x 5 x 5)

– B*(C*D) takes 1500 + 2500 = 4000 ops
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Enumeration Approach for MCM

• Matrix Chain Multiplication Alg.:
– Try all possible ways to parenthesize A=A0*A1*…*An-1

– Calculate number of ops for each one

– Pick the one that is best

• Running time:
– The number of parenthesizations is equal to the number of binary trees with 
𝑛 − 1 nodes

– This is exponential!

– It is called the Catalan number, and it is almost 4𝑛.

– This is a terrible algorithm!
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Greedy Approach for MCM

• Idea #1: repeatedly select the product that uses the fewest operations.

• Counter-example: 

– A is 101 × 11

– B is 11 × 9

– C is 9 × 100

– D is 100 × 99

– Greedy idea #1 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops

– (A*B)*(C*D) takes 9999+89991+89100=189090 ops

• The greedy approach is not giving us the optimal value.
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Dynamic Programming Approach for MCM

• The optimal solution can be defined in terms of optimal sub-problems
– There has to be a final multiplication (root of the expression tree) for the 

optimal solution.  

– Say, the final multiplication is at index k: 
(A0*…*Ak)*(Ak+1*…*An-1).

• Let us consider all possible places for that final multiplication:
– There are n-1 possible splits. Assume we know the minimum cost of 

computing the matrix product of each combination A0…Ai and Ai+1…An-1. Let’s 
call these N0,i and Ni+1,n-1.

• Recall that Ai is a di × di+1 dimensional matrix, and the final result will 
be a d0 × dn.
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Dynamic Programming Approach for MCM

– Define the following:

– Then the optimal solution N0,n-1 is the sum of two optimal sub-problems, N0,k 
and Nk+1,n-1 plus the time for the last multiplication.
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𝑁0,𝑛−1 = min
0≤𝑘<𝑛−1

{𝑁0,𝑘 + 𝑁𝑘+1,𝑛−1 + 𝑑0𝑑𝑘+1𝑑𝑛}



Dynamic Programming Approach for MCM

• Define sub-problems:

– Find the best parenthesization of an arbitrary set of consecutive products: 

Ai*Ai+1*…*Aj.

– Let Ni,j denote the minimum number of operations done by this sub-problem.

• Define Nk,k = 0 for all k.

– The optimal solution for the whole problem is then N0,n-1.
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Dynamic Programming Approach for MCM

• The characterizing equation for Ni,j is:

• Note that, for example N2,6 and N3,7, both need solutions to N3,6, N4,6, N5,6, and 
N6,6. Solutions from the set of no matrix multiplies to four matrix multiplies.

– This is an example of high sub-problem overlap, and clearly pre-computing these will 
significantly speed up the algorithm.
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𝑁𝑖,𝑗 = min
𝑖≤𝑘<𝑗

{𝑁𝑖,𝑘 +𝑁𝑘+1,𝑗 + 𝑑𝑖𝑑𝑘+1𝑑𝑗+1}



Recursive Approach

• We could implement the calculation of these Ni,j’s using a 
straightforward recursive implementation of the equation (aka not 
pre-compute them).
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Algorithm RecursiveMatrixChain(S, i, j):

 Input: sequence S of n matrices to be multiplied

 Output: number of operations in an optimal parenthesization of S

if i=j

 then return 0

for k  i to j do

 Ni, j  min{Ni,j,     RecursiveMatrixChain(S, i ,k)
                                  + RecursiveMatrixChain(S, k+1,j)  + di dk+1 dj+1}

return Ni,j 



Subproblem Overlap 
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1..4

1..1 2..4 1..2 3..4 1..3 4..4

2..2 3..4 2..3 4..4 3..3 4..41..1 2..2

3..3 4..4 2..2 3..3

...

How to schedule the sub-problems? 



Dynamic Programming Algorithm

• High sub-problem overlap, with independent sub-problems indicate 
that a dynamic programming approach may work.

• Construct optimal sub-problems “bottom-up.” and remember them.

• Ni,i’s are easy, so start with them

• Then do problems of length 2,3,… sub-problems, and so on.

• Running time: O(n3)
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Dynamic Programming Algorithm
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Algorithm matrixChain(S):

 Input: sequence S of n matrices to be multiplied

 Output: number of operations in an optimal parenthesization of S

for i  1 to n − 1 do

 Ni,i  0 

for b  1 to n − 1 do  

 { b = j − i is the length of the problem }

 for i  0 to n − b - 1  do

  j  i + b

  Ni,j  +

  for k  i to j − 1 do

   Ni,j  min{Ni,j, Ni,k + Nk+1,j + di dk+1 dj+1}

return N0,n-1 



Algorithm Visualization

• The bottom-up construction fills in the N array by 
diagonals

• Ni,j gets values from previous entries in i-th row and 
j-th column 

• Filling in each entry in the N table takes O(n) time.

• Total run time: O(n3)

• Getting actual parenthesization can be done by 
remembering “k” for each N entry
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answer

N 0 1

0

1

2 …

n-1

…

n-1j

i

𝑁𝑖,𝑗 = min
𝑖≤𝑘<𝑗

{𝑁𝑖,𝑘 +𝑁𝑘+1,𝑗 + 𝑑𝑖𝑑𝑘+1𝑑𝑗+1}

i

j



Algorithm Visualization

• A0: 30 X 35; A1: 35 X15; A2: 15X5;

     A3: 5X10;    A4: 10X20;  A5: 20 X 25 
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𝑁1,4 = min{
𝑁1,1 +𝑁2,4 + 𝑑1𝑑2𝑑5 = 0+ 2500+ 35 ∗ 15 ∗ 20 = 13000,
𝑁1,2 +𝑁3,4 + 𝑑1𝑑3𝑑5 = 2625+ 1000+ 35 ∗ 5 ∗ 20 = 7125,

𝑁1,3 +𝑁4,4 + 𝑑1𝑑4𝑑5 = 4375+ 0 + 35 ∗ 10 ∗ 20 = 11375

}
= 7125

𝑁𝑖,𝑗 = min
𝑖≤𝑘<𝑗

{𝑁𝑖,𝑘 +𝑁𝑘+1,𝑗 + 𝑑𝑖𝑑𝑘+1𝑑𝑗+1}



Algorithm Visualization

(A0*(A1*A2))*((A3*A4)*A5)

32



Matrix Chain Multiplication

• Some final thoughts
–We reduced replaced a O(2n) algorithm with a (n3) 

algorithm.
–While the generic top-down recursive algorithm would 

have solved O(2n) sub-problems, there are (n2) sub-
problems.
• Implies a high overlap of sub-problems.

–The sub-problems are independent:
• Solution to A0A1…Ak is independent of the solution to Ak+1…An.
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Matrix Chain Multiplication Summary

• Determine the cost of each pair-wise multiplication, then the 
minimum cost of multiplying three consecutive matrices (2 possible 
choices), using the pre-computed costs for two matrices.

• Repeat until we compute the minimum cost of all n matrices using 
the costs of the minimum n-1 matrix product costs.

– n-1 possible choices.
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The 0/1 Knapsack Problem

• Given: A set S of n items (one piece each), with each item i having
– wi - a positive weight
– bi - a positive benefit

• Goal: Choose items with maximum total benefit but with weight at 
most W.

• If we are not allowed to take fractional amounts, then this is the 0/1 
knapsack problem.

– In this case, we let T denote the set of items we take

– Objective: maximize

– Constraint:
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෍

𝑖∈𝑇

𝑏𝑖

෍

𝑖∈𝑇

𝑤𝑖 ≤ 𝑊

Linear Programming formulation



Example

• Given: A set S of n items, with each item i having
– bi - a positive “benefit”

– wi - a positive “weight”

• Goal: Choose items with maximum total benefit but with weight at most W.
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Weight:

Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80

Items:

box of width 9 in

Solution:

• item 5 ($80, 2 in)
• item 3 ($6, 2 in)
• item 1 ($20, 4 in)

“knapsack”
cover-small

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg


First Attempt

• Sk: Set of items numbered 1 to k.

• Define B[k] = best selection from Sk.

• Problem: does not have sub-problem optimality:
– Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of

(benefit, weight) pairs and total weight W = 20

37

Best for S4:

Best for S5:



Second Attempt

• Sk: Set of items numbered 1 to k.

• Define B[k,w] to be the best selection from Sk with weight at most w

• This does have sub-problem optimality.

• I.e., the best subset of Sk with weight at most w is either:
– the best subset of Sk-1 with weight at most w or 

– the best subset of Sk-1 with weight at most w−wk plus item k
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𝐵[𝑘,𝑤] = ቊ
𝐵[𝑘 − 1,𝑤] if 𝑤𝑘 > 𝑤

max{𝐵[𝑘 − 1,𝑤], 𝐵[𝑘 − 1,𝑤 − 𝑤𝑘] + 𝑏𝑘} else



Knapsack Example

item   weight    value             

   1       2           $12

   2       1           $10

   3       3           $20

   4       2           $15 
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Knapsack of capacity W = 5

w1 = 2, v1= 12    w2 = 1, v2= 10

w3 = 3, v3= 20    w4  = 2, v4= 15 

 
Max item 
allowed

Max Weight

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 12 12 12 12

2 0 10 12 22 22 22

3 0 10 12 22 30 32

4 0 10 15 25 30 37

𝐵[𝑘,𝑤] = ቊ
𝐵[𝑘 − 1,𝑤] if 𝑤𝑘 > 𝑤

max{𝐵[𝑘 − 1,𝑤], 𝐵[𝑘 − 1,𝑤 − 𝑤𝑘] + 𝑏𝑘} else



Algorithm

• Since B[k,w] is defined in terms of B[k−1,*], 
we can use two arrays of instead of a matrix.

• Running time is O(nW).

• Not a polynomial-time algorithm since W 
may be large.

• Called a pseudo-polynomial time algorithm.
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Algorithm 01Knapsack(S, W):

 Input: set S of n items with benefit bi 
 and weight wi; maximum weight W

 Output: benefit of best subset of S with 
   weight at most W

 let A and B be arrays of length W + 1

 for w  0 to W do

 B[w]  0 
for k  1 to n do
 copy array B into array A 
 for w  wk to W do
  if A[w−wk] + bk > A[w] 
then
   B[w]  A[w−wk] + bk 
return B[W]



RNA secondary structure

• RNA:  String B = b1b2…bn over alphabet { A, C, G, U }.
– e.g. GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

• Secondary structure:  RNA is single-stranded so it tends to loop back 
and form base pairs with itself. This structure is essential for 
understanding behavior of molecule.
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RNA secondary structure prediction

• For a given RNA sequences B, Finding a set of pairs S={(bi,bj)} that 
satisfy:

– [Watson–Crick complement] (bi,bj) ∈ {A–U, U–A, C–G, G–C}. 

– [No sharp turns] If (bi,bj), then i  <  j  –  4.

– [Non-crossing]  If (bi,bj) and (bk, bl) are two pairs in S, then we cannot have i < 
k < j < l.

42
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RNA secondary structure prediction

• RNA tends to form the secondary structure with more base pairs.

43
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