
DSAA 2043 | Design and Analysis of Algorithms

Dynamic Programming (I)

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

➢Fibonacci Numbers

➢Matrix chain multiplication

➢Knapsack Problem

➢RNA secondary structure

Fibonacci Numbers

• Definition

• The first several numbers are:
– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 , 144 …

• Question: Given n, how to compute F(n)?
– Recursion

2

Leonardo
Fibonacci

Fibonacci Numbers – Naïve Algorithm

• Computing the nth Fibonacci number recursively:

3

 F(n)

 F(n-1) + F(n-2)

F(n-2) + F(n-3) F(n-3) + F(n-4)

def Fib(n):
 if (n <= 1)
 return n;
 else
 return Fib(n - 1) + Fib(n - 2);

F(3)

F(2) F(1)

F(1) F(0)

code …

Fibonacci Numbers – Naïve Algorithm

• Running time

• What is the solution to this?
– Clearly it is O(2n), but this is not tight.

– A lower bound is (2n/2).

– You should notice that T(n) grows as fast as the Fibonacci numbers F(n), so in
fact T(n) = (F(n)).

4

T(n) = T(n-1) + T(n-2) + O(1)

T(n) ≥ T(n-1) + T(n-2) for n ≥2

T(n) ≥ 2T(n-2)

Fibonacci Numbers – Naïve Algorithm

• What’s going on with this naïve approach?

5

Fib(5)
 +

Fib(4)
 +

Fib(3)
 +

Fib(3)
 +

Fib(2)
 +

Fib(2)
 +

Fib(1)

Fib(2)
 +

Fib(1)

Fib(1)

Fib(0)

Fib(1)

Fib(0)

Fib(1)

Fib(0)

That’s a lot of repeated computation!

Memoization

• Memoization frees us from redundant calculations ☺
– Remember solutions of all the sub-problems

– Trade space for time

6

Sub-problem Opt Solution

fib(0) 0

fib(1) 1

fib(2) 1

fib(3) 2

fib(4) 3

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(5)

Fibonacci Numbers

– Computing the nth Fibonacci number using as follow:
– F(0) = 0
– F(1) = 1
– F(2) = 1+0 = 1
– …
– F(n-2) =
– F(n-1) =
– F(n) = F(n-1) + F(n-2)

• Efficiency:
– Time – O(n)
– Space – O(n) ➔ can be improved to O(1)

7

 0

 1

 1

 . . .

 F(n-2)

F(n-1)

 F(n)

def fasterFibonacci(n):

F = [0, 1, None, None, …, None]
\\ F has length n + 1

for i = 2, …, n:

F[i] = F[i-1] + F[i-2]

return F[n]

code …

This is an example of dynamic programming ☺

Dynamic Programming

8

◼ Ideas

◼ Ensure all needed recursive calls are
already computed and memorized

 ➔ a good schedule of computation

◼ (Optional) Reused space to store
previous recursive call results

➔ Arrive at the same efficient (special)
solution for Fib()

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(5)

“ Those who cannot remember the
past are condemned to repeat it. ”

— Dynamic Programming

9

Dynamic Programming

• Dynamic Programming is an algorithm design technique for
optimization problems: often minimizing or maximizing.

• Like divide and conquer, DP solves problems by combining solutions
to sub-problems.

• Unlike divide and conquer, sub-problems are not independent.
– DP breaks up a problem into a series of overlapping sub-problems.

• i.e, Both F[i+1] and F[i+2] directly use F[i]. And lots of different F[i+x] indirectly use F[i].

10

Main Ideas

1. Recursion: Divide the problem into sub-problems, so that their
solutions can be combined into a solution to the problem.

2. Tabulation of sub-problems: Solve each sub-problem just once and
save its solution in a “look-up” table.

11

Dynamic Programming

• The term Dynamic Programming comes from Control Theory, not computer
science. Programming refers to the use of tables (arrays) to construct a solution.

• In Dynamic Programming, we usually reduce time by increasing the amount of
space.

• We solve the problem by solving sub-problems of increasing size and saving each
optimal solution in a table (usually).

• The table is then used for finding the optimal solution to larger problems.

• Time is saved since each sub-problem is solved only once.

12

Two Ways to Think and Implement DP

• Top down:

13

• For Fibonacci:

• Solve the small problems first

• fill in F[0],F[1]

• Then bigger problems

• fill in F[2]

• …

• Then bigger problems

• fill in F[n-1]

• Then finally solve the real problem.

• fill in F[n]

• Bottom up:

• Think of it like a recursive algorithm.

• To solve the big problem:
• Recurse to solve smaller problems

• Those recurse to solve smaller problems
• etc..

• The difference from divide and
conquer:
• Keep track of what small problems

you’ve already solved to prevent re-
solving the same problem twice.

• Aka, “memoization”

Example of Top-Down Fibonacci

14

define a global list F = [0,1,None, None, …, None]

def Fibonacci(n):

if F[n] != None:

return F[n]

else:

F[n] = Fibonacci(n-1) + Fibonacci(n-2)

return F[n]

Memoization Visualization

15

8

76

6554

44 543332

2 2 2 2 3 3 42 32 31 1 110

10 10 10 10 10 1021
21 21

21

10 10 10 10

etc

Dynamic Programming

• Underpins many optimization problems, e.g.,
– Matrix Chaining optimization

– Longest Common Subsequence

– 0-1 Knapsack Problem

– Shortest path

• Next we will give many example problems to help understand the
basic idea of Dynamic Programming.

16

Recipe for Applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of the optimal
solution.

• Step 3: Use dynamic programming to find the value of the optimal
solution.

• Step 4: If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual solution.

• Step 5: If needed, code this up.

17

Matrix Chain Multiplication

• Review: Matrix Multiplication.
– C = A*B

– A is d × e and B is e × f

– O(def) time

18

A C

B

d d

f

e

f

e

i

j

i,j

𝐶[𝑖, 𝑗] = ෍

𝑘=0

𝑒−1

𝐴[𝑖, 𝑘] ∗ 𝐵[𝑘, 𝑗]

Matrix Chain Multiplication

• Matrix Chain Multiplication:
– Compute A=A0*A1*…*An-1

– Ai is di × di+1

– Problem: How to parenthesize?

• Example
– B is 3 × 100

– C is 100 × 5

– D is 5 × 5

– (B*C)*D takes 1500 + 75 = 1575 ops
• (3 x 100 x 5) + (3 x 5 x 5)

– B*(C*D) takes 1500 + 2500 = 4000 ops

19

Enumeration Approach for MCM

• Matrix Chain Multiplication Alg.:
– Try all possible ways to parenthesize A=A0*A1*…*An-1

– Calculate number of ops for each one

– Pick the one that is best

• Running time:
– The number of parenthesizations is equal to the number of binary trees with
𝑛 − 1 nodes

– This is exponential!

– It is called the Catalan number, and it is almost 4𝑛.

– This is a terrible algorithm!

20

Greedy Approach for MCM

• Idea #1: repeatedly select the product that uses the fewest operations.

• Counter-example:

– A is 101 × 11

– B is 11 × 9

– C is 9 × 100

– D is 100 × 99

– Greedy idea #1 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops

– (A*B)*(C*D) takes 9999+89991+89100=189090 ops

• The greedy approach is not giving us the optimal value.

21

Dynamic Programming Approach for MCM

• The optimal solution can be defined in terms of optimal sub-problems
– There has to be a final multiplication (root of the expression tree) for the

optimal solution.

– Say, the final multiplication is at index k:
(A0*…*Ak)*(Ak+1*…*An-1).

• Let us consider all possible places for that final multiplication:
– There are n-1 possible splits. Assume we know the minimum cost of

computing the matrix product of each combination A0…Ai and Ai+1…An-1. Let’s
call these N0,i and Ni+1,n-1.

• Recall that Ai is a di × di+1 dimensional matrix, and the final result will
be a d0 × dn.

22

Dynamic Programming Approach for MCM

– Define the following:

– Then the optimal solution N0,n-1 is the sum of two optimal sub-problems, N0,k
and Nk+1,n-1 plus the time for the last multiplication.

23

𝑁0,𝑛−1 = min
0≤𝑘<𝑛−1

{𝑁0,𝑘 + 𝑁𝑘+1,𝑛−1 + 𝑑0𝑑𝑘+1𝑑𝑛}

Dynamic Programming Approach for MCM

• Define sub-problems:

– Find the best parenthesization of an arbitrary set of consecutive products:

Ai*Ai+1*…*Aj.

– Let Ni,j denote the minimum number of operations done by this sub-problem.

• Define Nk,k = 0 for all k.

– The optimal solution for the whole problem is then N0,n-1.

24

Dynamic Programming Approach for MCM

• The characterizing equation for Ni,j is:

• Note that, for example N2,6 and N3,7, both need solutions to N3,6, N4,6, N5,6, and
N6,6. Solutions from the set of no matrix multiplies to four matrix multiplies.

– This is an example of high sub-problem overlap, and clearly pre-computing these will
significantly speed up the algorithm.

25

𝑁𝑖,𝑗 = min
𝑖≤𝑘<𝑗

{𝑁𝑖,𝑘 +𝑁𝑘+1,𝑗 + 𝑑𝑖𝑑𝑘+1𝑑𝑗+1}

Recursive Approach

• We could implement the calculation of these Ni,j’s using a
straightforward recursive implementation of the equation (aka not
pre-compute them).

26

Algorithm RecursiveMatrixChain(S, i, j):

 Input: sequence S of n matrices to be multiplied

 Output: number of operations in an optimal parenthesization of S

if i=j

 then return 0

for k  i to j do

 Ni, j  min{Ni,j, RecursiveMatrixChain(S, i ,k)
 + RecursiveMatrixChain(S, k+1,j) + di dk+1 dj+1}

return Ni,j

Subproblem Overlap

27

1..4

1..1 2..4 1..2 3..4 1..3 4..4

2..2 3..4 2..3 4..4 3..3 4..41..1 2..2

3..3 4..4 2..2 3..3

...

How to schedule the sub-problems?

Dynamic Programming Algorithm

• High sub-problem overlap, with independent sub-problems indicate
that a dynamic programming approach may work.

• Construct optimal sub-problems “bottom-up.” and remember them.

• Ni,i’s are easy, so start with them

• Then do problems of length 2,3,… sub-problems, and so on.

• Running time: O(n3)

28

Dynamic Programming Algorithm

29

Algorithm matrixChain(S):

 Input: sequence S of n matrices to be multiplied

 Output: number of operations in an optimal parenthesization of S

for i  1 to n − 1 do

 Ni,i  0

for b  1 to n − 1 do

 { b = j − i is the length of the problem }

 for i  0 to n − b - 1 do

 j  i + b

 Ni,j  +

 for k  i to j − 1 do

 Ni,j  min{Ni,j, Ni,k + Nk+1,j + di dk+1 dj+1}

return N0,n-1

Algorithm Visualization

• The bottom-up construction fills in the N array by
diagonals

• Ni,j gets values from previous entries in i-th row and
j-th column

• Filling in each entry in the N table takes O(n) time.

• Total run time: O(n3)

• Getting actual parenthesization can be done by
remembering “k” for each N entry

30

answer

N 0 1

0

1

2 …

n-1

…

n-1j

i

𝑁𝑖,𝑗 = min
𝑖≤𝑘<𝑗

{𝑁𝑖,𝑘 +𝑁𝑘+1,𝑗 + 𝑑𝑖𝑑𝑘+1𝑑𝑗+1}

i

j

Algorithm Visualization

• A0: 30 X 35; A1: 35 X15; A2: 15X5;

 A3: 5X10; A4: 10X20; A5: 20 X 25

31

𝑁1,4 = min{
𝑁1,1 +𝑁2,4 + 𝑑1𝑑2𝑑5 = 0+ 2500+ 35 ∗ 15 ∗ 20 = 13000,
𝑁1,2 +𝑁3,4 + 𝑑1𝑑3𝑑5 = 2625+ 1000+ 35 ∗ 5 ∗ 20 = 7125,

𝑁1,3 +𝑁4,4 + 𝑑1𝑑4𝑑5 = 4375+ 0 + 35 ∗ 10 ∗ 20 = 11375

}
= 7125

𝑁𝑖,𝑗 = min
𝑖≤𝑘<𝑗

{𝑁𝑖,𝑘 +𝑁𝑘+1,𝑗 + 𝑑𝑖𝑑𝑘+1𝑑𝑗+1}

Algorithm Visualization

(A0*(A1*A2))*((A3*A4)*A5)

32

Matrix Chain Multiplication

• Some final thoughts
–We reduced replaced a O(2n) algorithm with a (n3)

algorithm.
–While the generic top-down recursive algorithm would

have solved O(2n) sub-problems, there are (n2) sub-
problems.
• Implies a high overlap of sub-problems.

–The sub-problems are independent:
• Solution to A0A1…Ak is independent of the solution to Ak+1…An.

33

Matrix Chain Multiplication Summary

• Determine the cost of each pair-wise multiplication, then the
minimum cost of multiplying three consecutive matrices (2 possible
choices), using the pre-computed costs for two matrices.

• Repeat until we compute the minimum cost of all n matrices using
the costs of the minimum n-1 matrix product costs.

– n-1 possible choices.

34

The 0/1 Knapsack Problem

• Given: A set S of n items (one piece each), with each item i having
– wi - a positive weight
– bi - a positive benefit

• Goal: Choose items with maximum total benefit but with weight at
most W.

• If we are not allowed to take fractional amounts, then this is the 0/1
knapsack problem.

– In this case, we let T denote the set of items we take

– Objective: maximize

– Constraint:

35

෍

𝑖∈𝑇

𝑏𝑖

෍

𝑖∈𝑇

𝑤𝑖 ≤ 𝑊

Linear Programming formulation

Example

• Given: A set S of n items, with each item i having
– bi - a positive “benefit”

– wi - a positive “weight”

• Goal: Choose items with maximum total benefit but with weight at most W.

36

Weight:

Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80

Items:

box of width 9 in

Solution:

• item 5 ($80, 2 in)
• item 3 ($6, 2 in)
• item 1 ($20, 4 in)

“knapsack”
cover-small

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

First Attempt

• Sk: Set of items numbered 1 to k.

• Define B[k] = best selection from Sk.

• Problem: does not have sub-problem optimality:
– Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of

(benefit, weight) pairs and total weight W = 20

37

Best for S4:

Best for S5:

Second Attempt

• Sk: Set of items numbered 1 to k.

• Define B[k,w] to be the best selection from Sk with weight at most w

• This does have sub-problem optimality.

• I.e., the best subset of Sk with weight at most w is either:
– the best subset of Sk-1 with weight at most w or

– the best subset of Sk-1 with weight at most w−wk plus item k

38

𝐵[𝑘,𝑤] = ቊ
𝐵[𝑘 − 1,𝑤] if 𝑤𝑘 > 𝑤

max{𝐵[𝑘 − 1,𝑤], 𝐵[𝑘 − 1,𝑤 − 𝑤𝑘] + 𝑏𝑘} else

Knapsack Example

item weight value

 1 2 $12

 2 1 $10

 3 3 $20

 4 2 $15

39

Knapsack of capacity W = 5

w1 = 2, v1= 12 w2 = 1, v2= 10

w3 = 3, v3= 20 w4 = 2, v4= 15

Max item
allowed

Max Weight

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 12 12 12 12

2 0 10 12 22 22 22

3 0 10 12 22 30 32

4 0 10 15 25 30 37

𝐵[𝑘,𝑤] = ቊ
𝐵[𝑘 − 1,𝑤] if 𝑤𝑘 > 𝑤

max{𝐵[𝑘 − 1,𝑤], 𝐵[𝑘 − 1,𝑤 − 𝑤𝑘] + 𝑏𝑘} else

Algorithm

• Since B[k,w] is defined in terms of B[k−1,*],
we can use two arrays of instead of a matrix.

• Running time is O(nW).

• Not a polynomial-time algorithm since W
may be large.

• Called a pseudo-polynomial time algorithm.

40

Algorithm 01Knapsack(S, W):

 Input: set S of n items with benefit bi
 and weight wi; maximum weight W

 Output: benefit of best subset of S with
 weight at most W

 let A and B be arrays of length W + 1

 for w  0 to W do

 B[w]  0
for k  1 to n do
 copy array B into array A
 for w  wk to W do
 if A[w−wk] + bk > A[w]
then
 B[w]  A[w−wk] + bk
return B[W]

RNA secondary structure

• RNA: String B = b1b2…bn over alphabet { A, C, G, U }.
– e.g. GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

• Secondary structure: RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

41

RNA secondary structure prediction

• For a given RNA sequences B, Finding a set of pairs S={(bi,bj)} that
satisfy:

– [Watson–Crick complement] (bi,bj) ∈ {A–U, U–A, C–G, G–C}.

– [No sharp turns] If (bi,bj), then i < j – 4.

– [Non-crossing] If (bi,bj) and (bk, bl) are two pairs in S, then we cannot have i <
k < j < l.

42
  

RNA secondary structure prediction

• RNA tends to form the secondary structure with more base pairs.

43

	Slide 1: Dynamic Programming (I)
	Slide 2: Fibonacci Numbers
	Slide 3: Fibonacci Numbers – Naïve Algorithm
	Slide 4: Fibonacci Numbers – Naïve Algorithm
	Slide 5: Fibonacci Numbers – Naïve Algorithm
	Slide 6: Memoization
	Slide 7: Fibonacci Numbers
	Slide 8: Dynamic Programming
	Slide 9
	Slide 10: Dynamic Programming
	Slide 11: Main Ideas
	Slide 12: Dynamic Programming
	Slide 13: Two Ways to Think and Implement DP
	Slide 14: Example of Top-Down Fibonacci
	Slide 15: Memoization Visualization
	Slide 16: Dynamic Programming
	Slide 17: Recipe for Applying Dynamic Programming
	Slide 18: Matrix Chain Multiplication
	Slide 19: Matrix Chain Multiplication
	Slide 20: Enumeration Approach for MCM
	Slide 21: Greedy Approach for MCM
	Slide 22: Dynamic Programming Approach for MCM
	Slide 23: Dynamic Programming Approach for MCM
	Slide 24: Dynamic Programming Approach for MCM
	Slide 25: Dynamic Programming Approach for MCM
	Slide 26: Recursive Approach
	Slide 27: Subproblem Overlap
	Slide 28: Dynamic Programming Algorithm
	Slide 29: Dynamic Programming Algorithm
	Slide 30: Algorithm Visualization
	Slide 31: Algorithm Visualization
	Slide 32: Algorithm Visualization
	Slide 33: Matrix Chain Multiplication
	Slide 34: Matrix Chain Multiplication Summary
	Slide 35: The 0/1 Knapsack Problem
	Slide 36: Example
	Slide 37: First Attempt
	Slide 38: Second Attempt
	Slide 39: Knapsack Example
	Slide 40: Algorithm
	Slide 41: RNA secondary structure
	Slide 42: RNA secondary structure prediction
	Slide 43: RNA secondary structure prediction

