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Last time

• Dynamic programming is an algorithm design paradigm.

• Basic idea:
– Identify optimal sub-structure

• Optimum to the big problem is built out of optima of small sub-problems

– Take advantage of overlapping sub-problems
• Only solve each sub-problem once, then use it again and again

– Keep track of the solutions to sub-problems in a table as you build to the final 
solution.
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The goal of this lecture

• For you to get really bored of dynamic programming
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Longest Common Subsequence (LCS)

• A subsequence of a sequence/string S is obtained by deleting zero or 
more symbols from S. 

• For example, the following are some subsequences of “president”: 
pred, sdn, predent.  In other words, the letters of a subsequence of S 
appear in order in S, but they are not required to be consecutive.

• The longest common subsequence problem is to find a maximum 
length common subsequence between two sequences.
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Longest Common Subsequence

• How similar are these two species?

• Pretty similar, their DNA has a long common subsequence:
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AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

AGCCTAAGCTTAGCTT

DNA: DNA:



Longest Common Subsequence

• Subsequence:
– BDFH is a subsequence of ABCDEFGH

• If X and Y are sequences, a common subsequence is a sequence 
which is a subsequence of both.

– BDFH is a common subsequence of ABCDEFGH and of ABDFGHI

• A longest common subsequence…
– …is a common subsequence that is longest.

– The longest common subsequence of ABCDEFGH and ABDFGHI is ABDFGH.
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We sometimes want to find these

• Applications in bioinformatics

• The unix command diff

• Merging in version control 
– svn, git, etc…

7



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length of the longest 
common subsequence.

• Step 3: Use dynamic programming to find the length of the longest 
common subsequence.

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual LCS.

• Step 5: If needed, code this up like a reasonable person.
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Step 1: Optimal substructure
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A C G G T

A C G C T T AY

X

Prefixes:

Notation: denote this prefix ACGC by Y4

• Our sub-problems will be finding LCS’s of prefixes to X and Y.
• Let C[i,j] = length_of_LCS( Xi, Yj )

C[2,3] = 2
C[4,4] = 3

Examples:



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length of the longest 
common subsequence.

• Step 3: Use dynamic programming to find the length of the longest 
common subsequence.

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual LCS.

• Step 5: If needed, code this up like a reasonable person.
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Goal

• Write C[i,j] in terms of the solutions to smaller sub-problems
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C[i,j] = length_of_LCS( Xi, Yj )

A C G G A

A C G C T T AYj

Xi

i

j



Two cases
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A C G G A

A C G C T T AYj

Xi

• Our sub-problems will be finding 
LCS’s of prefixes to X and Y.

• Let C[i,j] = length_of_LCS( Xi, Yj )

Case 1: X[i] = Y[j]
i

j

These are 
the same

• Then C[i,j] = 1 + C[i-1,j-1].
• because LCS(Xi,Yj) = LCS(Xi-1,Yj-1) followed by A



Two cases
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A C G G T

A C G C T T AYj

Xi

• Our sub-problems will be finding 
LCS’s of prefixes to X and Y.

• Let C[i,j] = length_of_LCS( Xi, Yj )

Case 2: X[i] != Y[j]
i

j

These are 
not the 
same

• Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
• either LCS(Xi,Yj) = LCS(Xi-1,Yj) and       is not involved,

• or LCS(Xi,Yj) = LCS(Xi,Yj-1) and       is not involved,

• (maybe both are not involved, that’s covered by the “or”).

A

T



Recursive formulation of the optimal solution

𝐶 𝑖, 𝑗 = ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗 and 𝑖, 𝑗 > 0

max 𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 if 𝑋 𝑖 ≠ 𝑌 𝑗 and 𝑖, 𝑗 > 0
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A C G G A

A C G C T T AYj

Xi
A C G G T

A C G C T T AYj

Xi

Case 1 Case 2

A C G C T T AYj

X0

Case 0



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length of the longest 
common subsequence.

• Step 3: Use dynamic programming to find the length of the longest 
common subsequence.

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual LCS.

• Step 5: If needed, code this up like a reasonable person.
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LCS DP

• LCS(X, Y):
– C[i,0] = C[0,j] = 0 for all i = 0,…,m, j=0,…n.

– For i = 1,…,m and j = 1,…,n:

• If X[i] = Y[j]:

– C[i,j] = C[i-1,j-1]  + 1

• Else:

– C[i,j] = max{ C[i,j-1], C[i-1,j] }

– Return C[m,n]
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𝐶 𝑖, 𝑗 = ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗 and 𝑖, 𝑗 > 0

max 𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 if 𝑋 𝑖 ≠ 𝑌 𝑗 and 𝑖, 𝑗 > 0



Example

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0
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0 0 0 0

0

0

0

0

0
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Example
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0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

So the LCS of X and 
Y has length 3.

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0

A C G G A

A C T GY

X



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length of the longest 
common subsequence.

• Step 3: Use dynamic programming to find the length of the longest 
common subsequence.

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual LCS.

• Step 5: If needed, code this up like a reasonable person.
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0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A
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G

G

A

A C T G

X

Y

0

1
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3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0

A C G G A

A C T GY

X
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Example
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0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

• Once we’ve filled this in, 
we can work backwards.

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0

A C G G A

A C T GY

X
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0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2
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G
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A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

• Once we’ve filled this in, 
we can work backwards.

That 3 must have come 
from the 3 above it.

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0

A C G G A

A C T GY

X
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0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2
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A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

• Once we’ve filled this in, 
we can work backwards.

This 3 came from that 2 – 
we found a match!

• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

G

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0

A C G G A

A C T GY

X
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• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

G

That 2 may as well 
have come from 
this other 2.

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0

A C G G A

A C T GY

X
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0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

G

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0

A C G G A

A C T GY

X
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0 1 2 2 3

• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

GC

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0

A C G G A

A C T GY

X
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Example

𝐶 𝑖, 𝑗 =  ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌 𝑗  and 𝑖, 𝑗 > 0

max  𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗  if 𝑋 𝑖 ≠ 𝑌 𝑗  and 𝑖, 𝑗 > 0
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A C T GY
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• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

GCA

This is the LCS!



Finding an LCS

• Good exercise to write out pseudocode for what we just saw!
– Or you can find it in lecture notes.

• Takes time O(mn) to fill the table

• Takes time O(n + m) on top of that to recover the LCS
– We walk up and left in an n-by-m array

– We can only do that for n + m steps.

• Altogether, we can find LCS(X,Y) in time O(mn).
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the length of the longest 
common subsequence.

• Step 3: Use dynamic programming to find the length of the longest 
common subsequence.

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual LCS.

• Step 5: If needed, code this up like a reasonable person.
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Example

30

http://lcs-demo.sourceforge.net



Our approach actually isn’t so bad

• If we are only interested in the length of the LCS we can do a bit 
better on space:

– Since we go across the table one-row-at-a-time, we can only keep two rows if 
we want.

• If we want to recover the LCS, we need to keep the whole table.

• Can we do better than O(mn) time?
– A bit better.

• By a log factor or so.

– Try to design it (as your lab work)!
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What have we learned?

• We can find LCS(X,Y) in time O(nm) 
– if |Y|=n, |X|=m

• We went through the steps of coming up with a dynamic 
programming algorithm.

– We kept a 2-dimensional table, breaking down the problem by decrementing 
the length of X and Y.
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Independent Set

33

2

2

3

5

1

2

1

• Given a graph with 
weights on the 
vertices…

• What is the 
independent set with 
the largest weight?

An independent set 
is a set of vertices 
so that no pair has 
an edge between 
them.

5

1

2

1



Independent Set

• Actually, this problem is NP-complete.
So, we are unlikely to find an efficient algorithm.

• But if we also assume that the graph is a tree…

34

5 2

1

3

3

2

2

5

5

3
53

2

2

5

5

3

Problem: 
    find a maximal independent set in a tree (with vertex weights).

A tree is a 
connected 

graph with no 
cycles.



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of the optimal 
solution

• Step 3: Use dynamic programming to find the value of the optimal 
solution

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual solution.

• Step 5: If needed, code this up like a reasonable person.
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Optimal substructure

• Subtrees are a natural candidate.

• There are two cases:
1. The root of this tree is not 

in a maximal independent set.

2.   Or it is.
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Case 1: the root is not in a maximal independent set

• Use the optimal solution from 

these smaller problems.
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Case 2 : the root is in an maximal independent set

• Then its children can’t be.

• Below that, use the optimal solution from 

these smaller subproblems.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of the optimal 
solution.

• Step 3: Use dynamic programming to find the value of the optimal 
solution

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual solution.

• Step 5: If needed, code this up like a reasonable person.
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Recursive formulation: try 1

• Let A[u] be the weight of a maximal independent set in the tree 
rooted at u.

𝐴 𝑢 = max ൞

σ
𝑣∈𝑢.children 𝐴[𝑣]

weight 𝑢 + σ
𝑣∈𝑢.grandchildren 𝐴[𝑣]

40

When we implement this, how do 
we keep track of this term?



Recursive formulation: try 2

• Let A[u] be the weight of a maximal independent set in the tree 
rooted at u.

• Let B[u] = σ
𝑣∈𝑢.children 𝐴[𝑣]

𝐴 𝑢 = max ൞

σ
𝑣∈𝑢.children 𝐴[𝑣]

weight 𝑢 + σ
𝑣∈𝑢.children 𝐵[𝑣]

41

Keep two arrays!



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of the optimal 
solution.

• Step 3: Use dynamic programming to find the value of the optimal 
solution.

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual solution.

• Step 5: If needed, code this up like a reasonable person.

42



Dynamic Programming

• MIS_subtree(u):
– if u is a leaf:

• A[u] = weight(u)
• B[u] = 0

– else:
• for v in u.children:

– MIS_subtree(v)

• 𝐴 𝑢 = max{ σ
𝑣∈𝑢.children 𝐴[𝑣] , weight 𝑢 + σ

𝑣∈𝑢.children 𝐵[𝑣] }

• B 𝑢 = σ
𝑣∈𝑢.children 𝐴[𝑣]

• MIS(T):
– MIS_subtree(T.root)
– return A[T.root]

43

Initialize global arrays A, B 
that we will use in all of 

the recursive calls.

Running time?
• We visit each vertex once, and for 

every vertex we do O(1) work:
• Make a recursive call 
• Participate in summations of 

parent node
• Running time is O(|V|)



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of the optimal 
solution.

• Step 3: Use dynamic programming to find the value of the optimal 
solution.

• Step 4: If needed, keep track of some additional info so that the 
algorithm from Step 3 can find the actual solution.

• Step 5: If needed, code this up like a reasonable person.

44

You do this one!



What have we learned?

• We can find maximal independent sets in trees in time O(|V|) using 
dynamic programming!

• For this example, it was natural to implement our DP algorithm in a 
top-down way.
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Balanced Partition (BP) Problem

46

𝑆1,𝑆2

• We are given 𝑛 integers 𝐼 = {𝑘1,𝑘2, …,𝑘𝑛}, s. t. 0 ≤ 𝑘 𝑖 ≤ 𝐾.

• We like to partition them into two sets 𝑆1 and 𝑆2 s.t. the difference 𝑑 of 
the total sizes of the two sets is as small as possible

min 𝑑 s.t. 𝑑 = | ∑𝑖∈𝑆1
𝑘 𝑖 − ∑j∈𝑆2

𝑘 j |.

1,3,6 4,7

𝑆1 = 10 𝑆2 = 11

𝑑 = 10 − 11 = 1

𝑘1 = 1,𝑘2 = 3,𝑘3 = 4,𝑘4 = 6,𝑘5 = 7



𝑖• Let 𝑀 = ∑ 𝑘 ≤ 𝑛𝐾.

• 𝑚 = 0: The best we can hope for is 𝑆1 =
𝑀

2
− 0 and 𝑆2 = 𝑀 − 𝑆1.

max item size
1 2
𝑆 =

𝑀
− 𝑚

Solution

47

𝑖



𝑖 𝑖• Let 𝑀 = ∑ 𝑘 ≤ 𝑛𝐾.

• 𝑚 = 0: The best we can hope for is 𝑆1 =
𝑀

2
− 0 and 𝑆2 = 𝑀 − 𝑆1.

− 1 and 𝑆2 = 𝑀 − 𝑆1.• 𝑚 = 1: If this is not possible, the next best is 𝑆1 =
𝑀

2

max item size
1 2
𝑆 =

𝑀
− 𝑚

Solution

48



𝑖 𝑖• Let 𝑀 = ∑ 𝑘 ≤ 𝑛𝐾.

• 𝑚 = 0: The best we can hope for is 𝑆1 =
𝑀

2
− 0 and 𝑆2 = 𝑀 − 𝑆1.

− 1 and 𝑆2 = 𝑀 − 𝑆1.

− 2 and 𝑆2 = 𝑀 − 𝑆1.

− 3 and 𝑆2 = 𝑀 − 𝑆1.

• 𝑚 = 2: If this is not possible, the next best is 𝑆1

• 𝑚 = 3: If this is not possible, the next best is 𝑆1

• 𝑚 = 1: If this is not possible, the next best is 𝑆1 =

=

=

𝑀

2

𝑀

2
𝑀

2

• … try up to 𝑚 =
𝑀

2
. This is always possible since we have 𝑆1 = ∅,𝑆2 = 𝐼.

• So, lets check the best we can achieve starting from 𝑚 = 0.

max item size
1 2
𝑆 =

𝑀
− 𝑚

Solution
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𝑘1 = 1,𝑘2 = 3,𝑘3 = 4,𝑘4 = 6,𝑘5 = 7

50

2
𝑀 = 21,

𝑀
= 10

𝑆1 𝑆2

Possible allocations

10 11

9 12

8 13

1 20

0 21

… …

Can I fill exactly a 
knapsack of size 10?

The “subsetum problem”

Example

Given:



Reduction to the Subsetum Problem (SP)
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• We reduced BP to the problem SP:

• 𝑆𝑃[𝑛,𝐷]: We are given 𝑛 integers 𝐼 = {𝑘1, …,𝑘𝑛}, 𝑠. 𝑡. 0 ≤ 𝑘 𝑖 ≤ 𝐾, and 
an integer 𝐷 ≤ 𝑛𝐾. Is there a subset 𝑆 of them such that ∑𝑖∈𝑆𝑘 𝑖 = 𝐷? 
(True/False).



Reduction to the Subsetum Problem (SP)
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• Solution of BP:

• Solve BP by finding the smallest value of 𝑚 = 0,1, …,
𝑀

2
for which

𝑆𝑃  𝑛,
𝑀

2
− 𝑚 = 𝑇𝑟𝑢𝑒.

• Do we need to solve SP repeatedly (again and again form scratch) to 
solve BP?

• Can we reuse the solution of subproblems?



Solving SP
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• Write the DP equations for SP.

• Very similar to knapsack problem.

• Can you guess them?



Solving SP

54

SP[𝑗,𝑋] =  max {𝑆𝑃[ 𝑗 − 1,𝑋] ,𝑆𝑃[𝑗 − 1,𝑋 − 𝑘 j  ]  } ,  0 ≤ 𝑗 ≤ 𝑛,𝑋 ≤ 𝐷,

SP[𝑗, 0] = 1, 𝑗 = 0, …,𝑛,  𝑆𝑃[ 0,𝑋 > 0] = 0,  𝑆𝑃[𝑘,𝑋 < 0] = 0.

• Solution: SP[n, 𝐷].

• Topological sort: 𝑗 = 0,1,2 …,𝑛,

• Complexity: ??

𝑋 = 0,1, …,𝐷.

given items 1. .𝑗, is 𝑗 used to 
fill 𝑋 exactly?

-> same as Knapsack = 𝑂(𝑛𝐷).

54

• Recursion for 𝑆𝑃[𝑛,𝐷]:



Solving SP
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Solution for BP:

• Solve 𝑆𝑃[𝑛, 𝑀/2 ], fill in table of sub-problems.

• Find largest𝑋 = 𝑀/2 , 𝑀/2 − 1, …, s. t. 𝑆𝑃[1. .𝑛,𝑋] = 1.

𝑀: sum of item sizes

• Recursion for 𝑆𝑃[𝑛,𝐷]:
given items 1. .𝑗, is 𝑗 used to 
fill 𝑋 exactly?

SP[𝑗,𝑋] =  max {𝑆𝑃[ 𝑗 − 1,𝑋] ,𝑆𝑃[𝑗 − 1,𝑋 − 𝑘 j  ]  } ,  0 ≤ 𝑗 ≤ 𝑛,𝑋 ≤ 𝐷,

SP[𝑗, 0] = 1, 𝑗 = 0, …,𝑛,  𝑆𝑃[ 0,𝑋 > 0] = 0,  𝑆𝑃[𝑘,𝑋 < 0] = 0.



Exercise
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X=0 1 2 3 4 5

j=0

1

2

3

4

• Solve BP for item sizes 1,2,3,4.
𝑆𝑃[ 𝑗,𝑋] = max{𝑆𝑃[ 𝑗 − 1,𝑋] ,𝑆𝑃[𝑗 − 1,𝑋 − 𝑘j]}, 0 ≤ 𝑗 ≤ 𝑛,𝑋 ≤ 𝐷,
𝑆𝑃[ 𝑗, 0] = 1, 𝑗 = 0, …,𝑛, 𝑆𝑃[ 0,𝑋 > 0]= 0, 𝑆𝑃[𝑘,𝑋 < 0] =  0.

𝑀 = 10, 𝑀/2 = 5



Exercise
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X=0 1 2 3 4 5

j=0 1 0 0 0 0 0

1 1 1 0 0 0 0

2 1 1 1 1 0 0

3 1 1 1 1 1 1

4 1 1 1 1 1 1

𝑀 = 10, 𝑀/2 = 5• Solve BP for item sizes 1,2,3,4.
𝑆𝑃[ 𝑗,𝑋] = max{𝑆𝑃[ 𝑗 − 1,𝑋] ,𝑆𝑃[𝑗 − 1,𝑋 − 𝑘j]}, 0 ≤ 𝑗 ≤ 𝑛,𝑋 ≤ 𝐷,
𝑆𝑃[ 𝑗, 0] = 1, 𝑗 = 0, …,𝑛, 𝑆𝑃[ 0,𝑋 > 0]= 0, 𝑆𝑃[𝑘,𝑋 < 0] =  0.



Conclusions
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• DP is a technique for solving complex optimization problems
computationally.

• Key idea is to decompose a problem into a calculation involving the
independent solution of similar type problems defined on reduced
size systems (recurrence).

• The reduction of the complexity is due to memoization: solving
each subproblem only once and remembering the results.
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