DSAA 2043 | Design and Analysis of Algorithms

Dynamic Programming (II)

Longest common subsequence
 Independent sets in trees
 Balanced partition problem

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

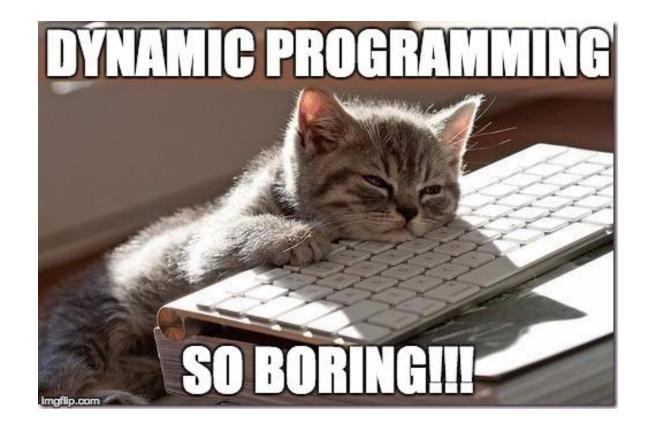
- Dynamic programming is an algorithm design paradigm.
- Basic idea:

Last time

- Identify optimal sub-structure
 - Optimum to the big problem is built out of optima of small sub-problems
- Take advantage of **overlapping sub-problems**
 - Only solve each sub-problem once, then use it again and again
- Keep track of the solutions to sub-problems in a table as you build to the final solution.

The goal of this lecture

• For you to get really bored of dynamic programming



Longest Common Subsequence (LCS)

- A subsequence of a sequence/string *S* is obtained by deleting zero or more symbols from *S*.
- For example, the following are some subsequences of "president": pred, sdn, predent. In other words, the letters of a subsequence of S appear in order in *S*, but they are not required to be consecutive.
- The longest common subsequence problem is to find a maximum length common subsequence between two sequences.

Longest Common Subsequence

AGCCTAAGCTTAGCTT

Longest Common Subsequence

- Subsequence:
 - BDFH is a **subsequence** of ABCDEFGH
- If X and Y are sequences, a **common subsequence** is a sequence which is a subsequence of both.
 - BDFH is a **common subsequence** of ABCDEFGH and of ABDFGHI
- A longest common subsequence...
 - ... is a common subsequence that is longest.
 - The **longest common subsequence** of ABCDEFGH and ABDFGHI is ABDFGH.

We sometimes want to find these

• Applications in bioinformatics

- \bullet The unix command diff
- Merging in version control

 svn, git, etc...

			🛅 anari — anari@nimbook —	
→ A B C D E F G [H	~	cat	file1	1
→ A B D F G H [I	~	cat	file2	
	2 2 3 5 7	dif1	f file1 file2	

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Step 1: Optimal substructure

Prefixes:

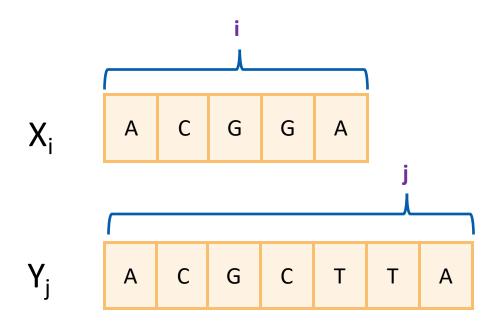
Notation: denote this prefix ACGC by Y₄

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let C[i,j] = length_of_LCS(X_i, Y_j)

Recipe for applying Dynamic Programming

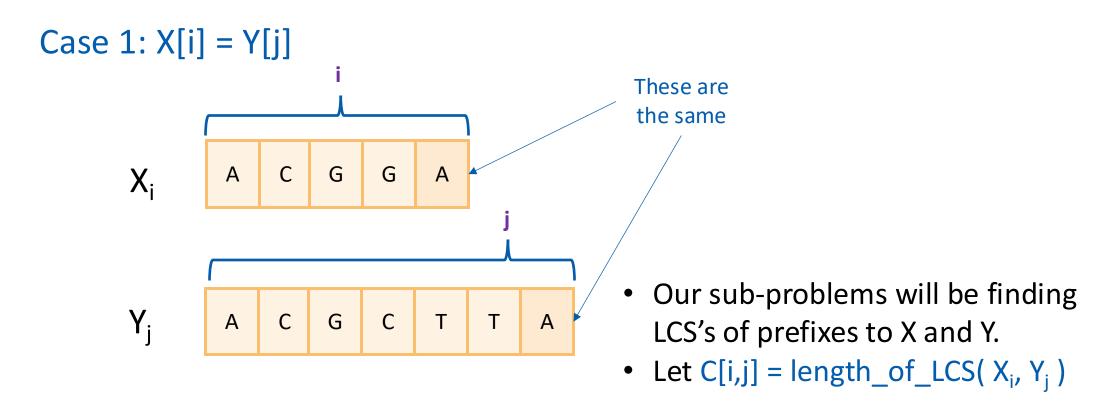
- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

• Write C[i,j] in terms of the solutions to smaller sub-problems



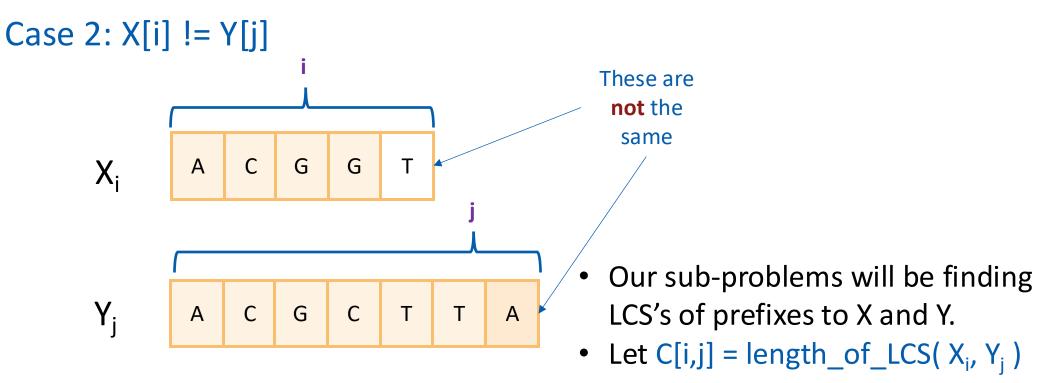
C[i,j] = length_of_LCS(X_i, Y_j)

Two cases



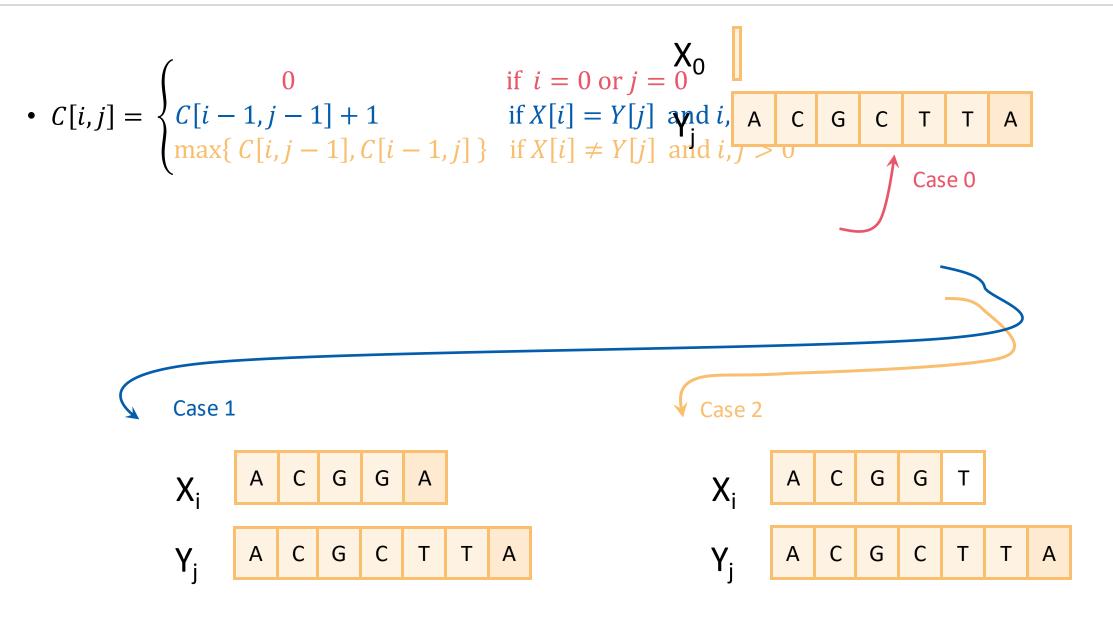
- Then C[i,j] = 1 + C[i-1,j-1].
 - because $LCS(X_i, Y_j) = LCS(X_{i-1}, Y_{j-1})$ followed by A

Two cases



- Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
 - either $LCS(X_i, Y_i) = LCS(X_{i-1}, Y_i)$ and \top is not involved,
 - or $LCS(X_i, Y_j) = LCS(X_i, Y_{j-1})$ and A is not involved,
 - (maybe both are not involved, that's covered by the "or").

Recursive formulation of the optimal solution



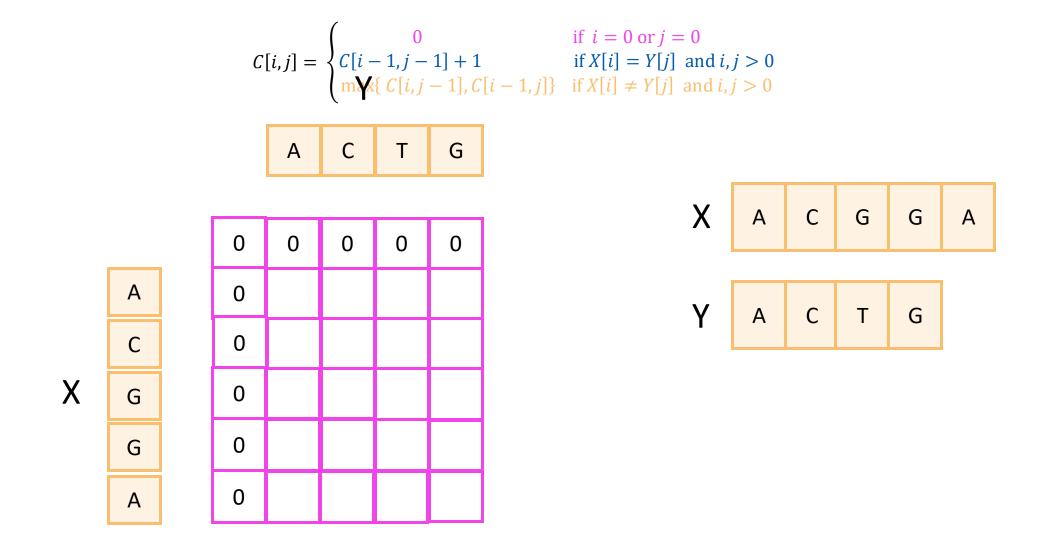
Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

• LCS(X, Y): -C[i,0] = C[0,j] = 0 for all i = 0,...,m, j=0,...n. - **For** i = 1,...,m and j = 1,...,n: • **If** X[i] = Y[j]: -C[i,j] = C[i-1,j-1] + 1• Else: $-C[i,j] = max\{C[i,j-1],C[i-1,j]\}$ – Return C[m,n]

Running time: O(nm)

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$



				Y					
				А	С	Т	G		
			0	0	0	0	0		
	А		0	1	1	1	1		
	С		0	1	2	2	2		
Х	G		0	1	2	2	3		
	G		0	1	2	2	3		
	А	-	0	1	2	2	3		

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Х

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0\\ & \bigvee \end{cases}$$

		0	0	0	0	0
А		0	1	1	1	1
С		0	1	2	2	2
G		0	1	2	2	3
G		0	1	2	2	3
А	-	0	1	2	2	3

20

Х

• Once we've filled this in, we can work backwards.

 $C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$

Y

	0	0	0	0	0
А	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
А	0	1	2	2	3

Х

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0\\ \max\{ C[i,j-1], C[i-1,j] \} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

Y

	0	0	0	0	0
4	0	1	1	1	1
С	0	1	2	2	2
3	0	1	2	2	3
3	0	1	2	2	3
4	0	1	2	2	3

• Once we've filled this in, we can work backwards.

That 3 must have come from the 3 above it.

Х

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0\\ \mathbf{Y} \end{cases}$$

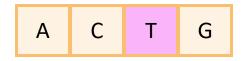
		_			
	0	0	0	0	0
1	0	1	1	1	1
2	0	1	2	2	2
3	0	1	2	2	3
3	0	1	2	2	3
1	0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

This 3 came from that 2 – we found a match!

Х

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0\\ \mathbf{Y} \end{cases}$$



	0	0	0	0	0
A	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
A	0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

That 2 may as well have come from this other 2.

G

Х

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0\\ \mathbf{Y} \end{cases}$$

	0	0	0	0	0
А	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
А	0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

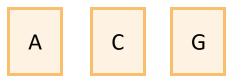
Х

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0\\ \mathbf{Y} \end{cases}$$

	0	0	0	0	0
А	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
А	0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

		(0			Xif $i = 0$	А	С	G	G	А
С	[i, j] =	C[i -	- 1, <i>j</i> –	1] + 1		if $X[i] =$	<i>Y</i> [<i>j</i>] a	nd <i>i, j</i> :	> 0		
		(m¥	{	— 1], C	[<i>i</i> – 1, <i>j</i>] }	if $X[i] \neq \mathbf{Y}$	А	С	т	G	
	А	С	Т	G							
						• 0	nce w	ve've	filled	d this	in,
						W	e can	wor	k bac	kwar	ds.
0	0	0	0	0		• A					
0	1	1	1	1			at we		nd ar	1 eler	nent



This is the LCS!

Х

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

Finding an LCS

- Good exercise to write out pseudocode for what we just saw!
 - Or you can find it in lecture notes.
- Takes time O(mn) to fill the table
- Takes time O(n + m) on top of that to recover the LCS
 - We walk up and left in an n-by-m array
 - We can only do that for n + m steps.
- Altogether, we can find LCS(X,Y) in time O(mn).

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

Input X springtime	Max Size: 10 - + Sequences: Random() Char Variant: 4 - +
printi	
i : 10 Xi : e j : 8 Yj : g Step: Xi='e' not equal to Yi='g' b[10, 8]='↑' and c[10, 8]=c[9, 8]=6 See line number 13 and 14	LCS-LENGTH(X, Y) Execute LCS Length 1 m = length[X] 2 n = length[Y] 3 for i = 1 to m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 do c[i, 0] = 0 5 for j = 1 to n 6 do c[0, j] = 0 7 for i = 1 to m 8 do for j = 1 to n 9 do if Xi == Yj 10 then c[i, j] = c[i-1, j-1] + 1 11 $b[i, j] = ARROW_CORNER$ 12 else if c[i-1, j] >= c[i, j-1] 13 then c[i, j]=c[i-1, j] 14 $b[i, j] = ARROW_UP$ 15 else c[i, j]=c[i, j-1] 16 $b[i, j] = ARROW_LEFT$
5 n 0 \uparrow 1 \uparrow 2 \uparrow 3 \checkmark 4 \leftarrow 4 \leftarrow 4 \leftarrow 4 \leftarrow 4 6 g 0 \uparrow 1 \uparrow 2 \uparrow 3 \uparrow 4 \uparrow 4 \uparrow 4 \uparrow 4 \uparrow 4 \uparrow 5 7 t 0 \uparrow 1 \uparrow 2 \uparrow 3 \uparrow 4 \uparrow 5 \leftarrow 5 \leftarrow 5 \uparrow 5 8 i 0 \uparrow 1 \uparrow 2 \uparrow 3 \uparrow 4 \uparrow 5 \leftarrow 6 \leftarrow 6 9 m 0 \uparrow 1 \uparrow 2 \uparrow 3 \uparrow 4 \uparrow 5 \uparrow 6 \leftarrow 6 \leftarrow 6	16 $b[i, j] = ARROW_LEFT$ 17 return c and b PRINT-LCS(b, X, i, j) Execute PRINT LCS 1 if i=0 or j=0 2 then return 3 if $b[i, j] = ARROW_CORNER$ 4 then PRINT-LCS(b, X, i-1, j-1) 5 print Xi
10 e $0 \uparrow 1 \uparrow 2 \uparrow 3 \uparrow 4 \uparrow 5 \uparrow 6 \uparrow 6 \uparrow 6$	$\begin{array}{c} \text{6 elseif } b[i, j] == \text{ARROW}_{UP} \\ \text{7 then PRINT-LCS(b, X, i-1, j)} \end{array}$

http://lcs-demo.sourceforge.net

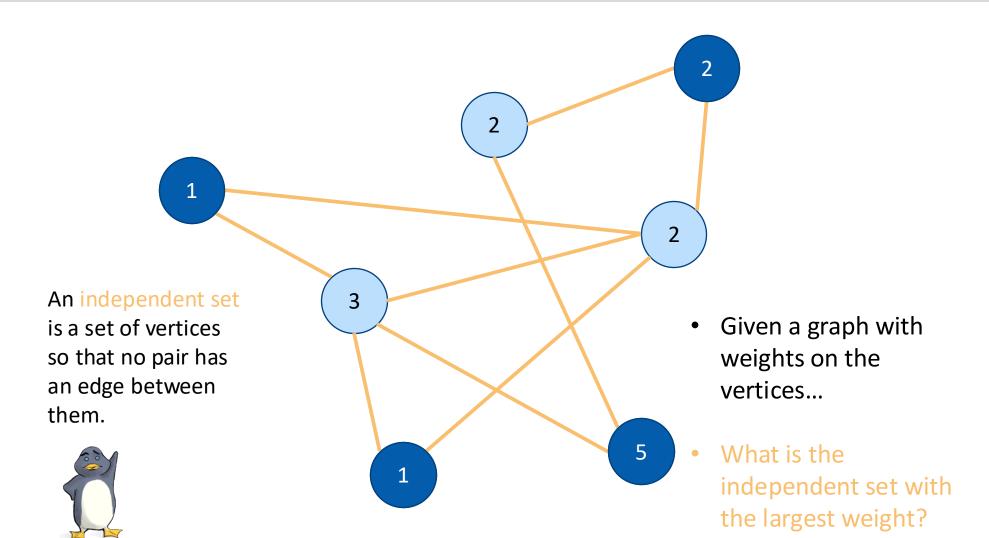
Our approach actually isn't so bad

- If we are only interested in the length of the LCS we can do a bit better on space:
 - Since we go across the table one-row-at-a-time, we can only keep two rows if we want.
- If we want to recover the LCS, we need to keep the whole table.
- Can we do better than O(mn) time?
 - A bit better.
 - By a log factor or so.
 - Try to design it (as your lab work)!

What have we learned?

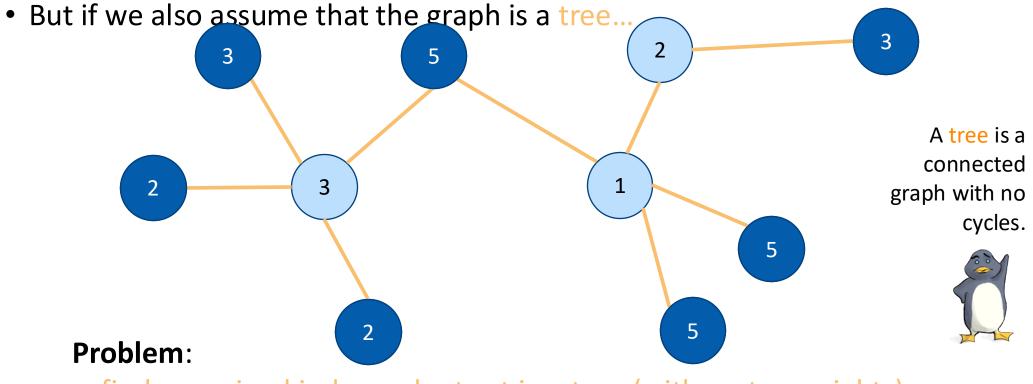
- We can find LCS(X,Y) in time O(nm)
 if |Y|=n, |X|=m
- We went through the steps of coming up with a dynamic programming algorithm.
 - We kept a 2-dimensional table, breaking down the problem by decrementing the length of X and Y.

Independent Set



Independent Set

• Actually, this problem is NP-complete. So, we are unlikely to find an efficient algorithm.



find a maximal independent set in a tree (with vertex weights).

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

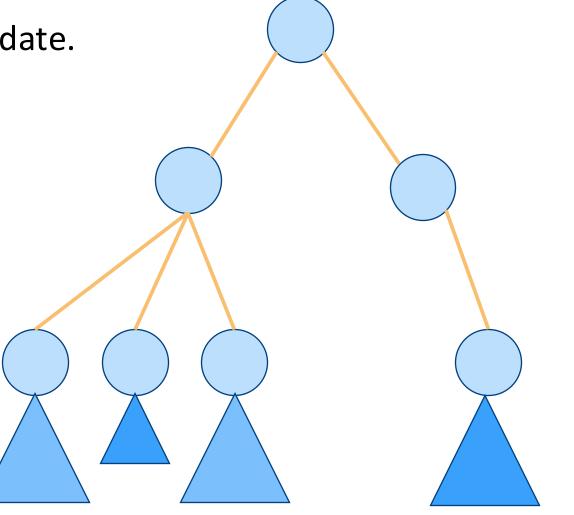
- Step 2: Find a recursive formulation for the value of the optimal solution
- Step 3: Use dynamic programming to find the value of the optimal solution
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure

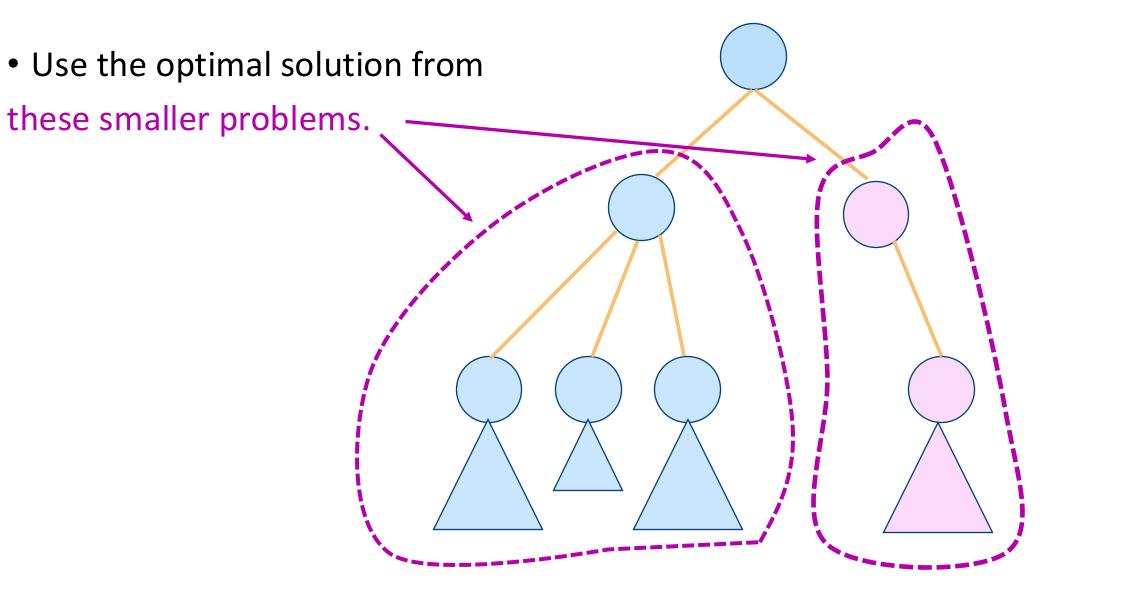
- Subtrees are a natural candidate.
- There are **two cases**:

1. The root of this tree is **not** in a maximal independent set.

2. Or it is



Case 1: the root is not in a maximal independent set



Case 2 : the root is in an maximal independent set

• Then its children can't be. • Below that, use the optimal solution from these smaller subproblems.

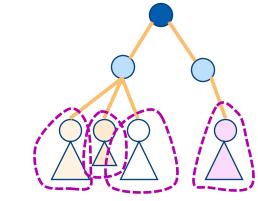
Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal ^L solution.
- Step 3: Use dynamic programming to find the value of the optimal solution
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Recursive formulation: try 1

- Let A[u] be the weight of a maximal independent set in the tree rooted at u.
- $A[u] = \max \begin{cases} \sum_{v \in u. \text{children}} A[v] \\ \text{weight}(u) + \sum_{v \in u. \text{grandchildren}} A[v] \end{cases}$

When we implement this, how do we keep track of this term?

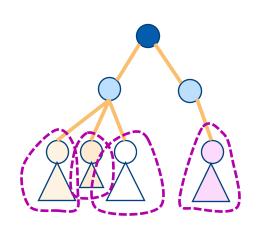


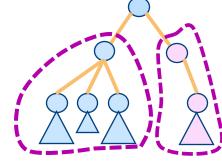
Recursive formulation: try 2

Keep two arrays!

- Let A[u] be the weight of a maximal independent set in the tree rooted at u.
- Let $B[u] = \sum_{v \in u.children} A[v]$

•
$$A[u] = \max \begin{cases} \sum_{v \in u. \text{children}} A[v] \\ \text{weight}(u) + \sum_{v \in u. \text{children}} B[v] \end{cases}$$





Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Dynamic Programming

- MIS_subtree(u):
 - if u is a leaf:
 - A[u] = weight(u)
 - B[u] = 0
 - else:
 - **for** v in u.children:
 - MIS_subtree(v)
 - $A[u] = \max\{\sum_{v \in u.children} A[v], weight(u) + \sum_{v \in u.children} B[v]\}$
 - $B[u] = \sum_{v \in u. \text{children}} A[v]$
- MIS(T):
 - MIS_subtree(T.root)
 - **return** A[T.root]

Initialize global arrays A, B that we will use in all of the recursive calls.

- **Running time?**
- We visit each vertex once, and for every vertex we do O(1) work:
 - Make a recursive call
 - Participate in summations of parent node
- Running time is O(|V|)

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

What have we learned?

- 香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE ANI TECHNOLOGY (GUANGZHOL
- We can find maximal independent sets in trees in time O(|V|) using dynamic programming!
- For this example, it was natural to implement our DP algorithm in a top-down way.

Balanced Partition (BP) Problem

- We are given n integers $I = \{k_1, k_2, ..., k_n\}$, s.t. $0 \le k_i \le K$.
- We like to **partition** them into two sets S_1 and S_2 s.t. the difference d of the total sizes of the two sets is as small as possible

$$\min_{S_1,S_2} d \text{ s.t. } d = |\sum_{i \in S_1} k_i - \sum_{j \in S_2} k_j|.$$

$$k_1 = 1, k_2 = 3, k_3 = 4, k_4 = 6, k_5 = 7$$

$$|S_1| = 10 \quad |S_2| = 11$$

$$d = |10 - 11| = 1$$



香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

- Let $M = \sum_{i} k_i \le nK$.
- m = 0: The best we can hope for is $|S_1| = \left\lfloor \frac{M}{2} \right\rfloor 0$ and $S_2 = M S_1$.
- m = 1: If this is not possible, the next best is $|S_1| = \left|\frac{M}{2}\right| 1$ and $S_2 = M S_1$.

 $|S_1| = \left|\frac{M}{2}\right| - m$

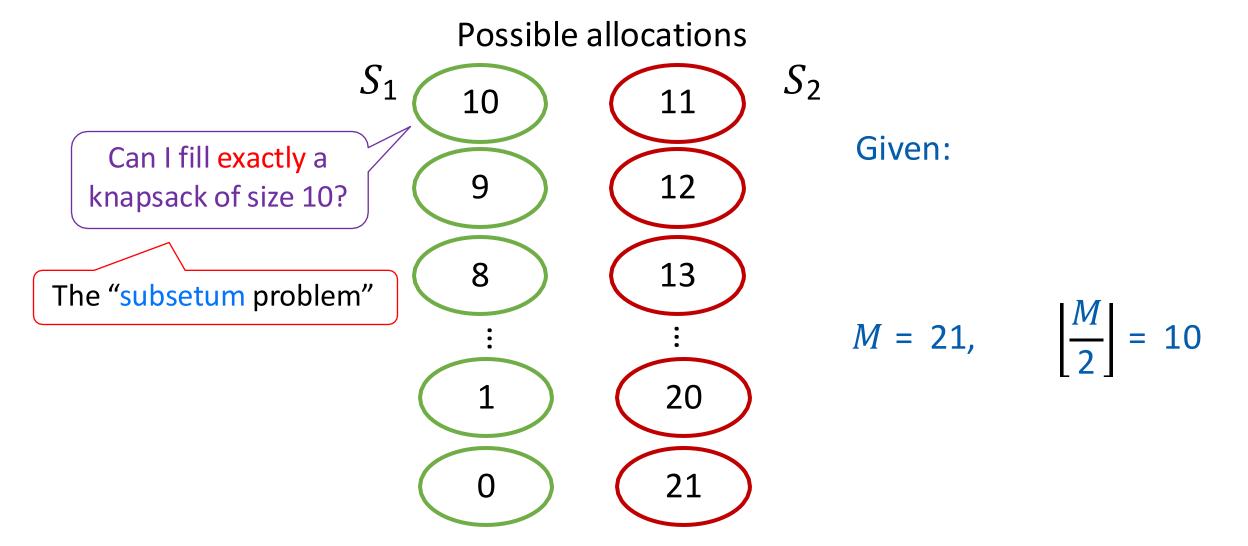
• Let $M = \sum_{i} k_i \le nK$.

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

max item size $|S_1| = \left\lfloor \frac{M}{2} \right\rfloor - m$

- m = 0: The best we can hope for is $|S_1| = \left\lfloor \frac{M}{2} \right\rfloor 0$ and $S_2 = M S_1$.
- m = 1: If this is not possible, the next best is $|S_1| = \left|\frac{M}{2}\right| 1$ and $S_2 = M S_1$.
- m = 2: If this is not possible, the next best is $|S_1| = \left|\frac{M}{2}\right| 2$ and $S_2 = M S_1$.
- m = 3: If this is not possible, the next best is $|S_1| = \left|\frac{M}{2}\right| 3$ and $S_2 = M S_1$.
- ... try up to $m = \left\lfloor \frac{M}{2} \right\rfloor$. This is always possible since we have $S_1 = \emptyset, S_2 = I$.
- So, lets check the best we can achieve starting from m = 0.

Example $3, k_3 = 4, k_4 = 6, k_5 = 7$



港科技大学(广州)

OF SCIENCE AND

Reduction to the Subsetum Problem (SP)

- We reduced *BP* to the problem *SP*:
- SP[n, D]: We are given n integers $I = \{k_1, ..., k_n\}, s. t. 0 \le k_i \le K$, and an integer $D \le nK$. Is there a subset S of them such that $\sum_{i \in S} k_i = D$? (True/False).

Reduction to the Subsetum Problem (SP)

- Solution of *BP*:
- Solve *BP* by finding the smallest value of $m = 0, 1, ..., \left\lfloor \frac{M}{2} \right\rfloor$ for which $SP\left[n, \left\lfloor \frac{M}{2} \right\rfloor m\right] = True.$
- Do we need to solve SP repeatedly (again and again form scratch) to solve BP?
- Can we reuse the solution of subproblems?

• Write the DP equations for SP.

• Very similar to knapsack problem.

• Can you guess them?

• Recursion for *SP*[*n*, *D*]:

given items 1..*j*, is *j* used to fill *X* exactly?

 $SP[j, X] = \max \{SP[j - 1, X], SP[j - 1, X - k_j]\}, 0 \le j \le n, X \le D,$ SP[j, 0] = 1, j = 0, ..., n, SP[0, X > 0] = 0, SP[k, X < 0] = 0.

- Solution: *SP*[*n*, *D*].
- Topological sort: j = 0, 1, 2, ..., n, X = 0, 1, ..., D.
- Complexity: ?? -> same as Knapsack = O(nD).

• Recursion for *SP*[*n*, *D*]:

given items 1..*j*, is *j* used to fill *X* exactly?

 $SP[j,X] = \max \left\{ SP[j-1,X], SP[j-1,X-k_j] \right\}, \ 0 \le j \le n, X \le D,$

SP[j,0] = 1, j = 0, ..., n, SP[0, X > 0] = 0, SP[k, X < 0] = 0.

Solution for BP:

M: sum of item sizes

- Solve *SP*[*n*,[*M*/2]], fill in table of sub-problems.
- Find largest $X = \lfloor M/2 \rfloor, \lfloor M/2 \rfloor 1, ..., s.t. SP[1..n, X] = 1.$

• Solve BP for item sizes 1,2,3,4. A = 10, [M/2] = 5 $SP[j,X] = \max{SP[j-1,X], SP[j-1,X-k_j]}, 0 \le j \le n, X \le D,$ SP[j,0] = 1, j = 0, ..., n, SP[0,X > 0] = 0, SP[k,X < 0] = 0.

	X=0	1	2	3	4	5
j=0						
1						
2						
3						
4						

• Solve *BP* for item sizes 1,2,3,4. A = 10, [M/2] = 5 $SP[j,X] = \max{SP[j-1,X], SP[j-1,X-k_j]}, 0 \le j \le n, X \le D,$ SP[j,0] = 1, j = 0, ..., n, SP[0,X > 0] = 0, SP[k,X < 0] = 0.

	X=0	1	2	3	4	5
j=0	1	0	0	0	0	0
1	1	1	0	0	0	0
2	1	1	1	1	0	0
3	1	1	1	1	1	1
4	1	1	1	1	1	1

• DP is a technique for solving complex optimization problems computationally.

Conclusions

- Key idea is to decompose a problem into a calculation involving the independent solution of similar type problems defined on reduced size systems (recurrence).
- The reduction of the complexity is due to memoization: solving each subproblem only once and remembering the results.