EEREXRZ (M)

DSAA 2043 | Design and Analysis of Algorithms I

TECHNOLOGY (GUANGZHOU)

Dynamic Programming (ll)

» Longest common subsequence
»Independent sets in trees
»Balanced partition problem

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

B FEHBEREZ (M

° T THE HONG KONG

La St t I m e LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

-~

* Dynamic programming is an algorithm design paradigm.

* Basic idea:
— Identify optimal sub-structure

— Take advantage of overlapping sub-problems

— Keep track of the solutions to sub-problems in a table as you build to the final
solution.

- The goal of this lecture W B Enss

* For you to get of dynamic programming

w _
‘ i Myl 2 -

' Longest Common Subsequence (LCS) W i

* A subsequence of a sequence/string S is obtained by deleting zero or
more symbols from S.

* For example, the following are some subsequences of “president”:
pred, sdn, predent. In other words, the letters of a subsequence of S
appearin orderin S, but they are not required to be consecutive.

* The longest common subsequence problem is to find a maximum
length common subsequence between two sequences.

' Longest Common Subsequence W e

* How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGITTAGCTTG

AGCCTAAGCTTAGCTT

e Subsequence:

' Longest Common Subsequence

is a subsequence of ABCDEFG

which is a subsequence of both.

BEEREXRZ (M

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

@ THE HONG KONG
e If Xand Y are sequences, a common subsequence is a sequence
* A longest common subsequence...

is a common subsequence of ABCDEFGH and of ABDFGHI
— ...Is a common subsequence that is longest.
— The longest common subsequence of ABCDE and

| is

' We sometimes want to find these W e

* Applications in bioinformatics R

~ cat filel

~ cat file2

* The unix command

* Merging in version control
etc...

~ diff filel file2

-+
A
B
C
D
E
F
G
H
B
A
]
D
F
G
H
I
-
3
<
5
<
8
>

B FERFARFETM
- Recipe for applying Dynamic Programming W e AT

ldentify optimal substructure.

Find a recursive formulation for the length of the longest
common subseqguence.

Use dynamic programming to find the length of the longest
common subsequence.

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual LCS.

If needed, code this up like a reasonable person.

' Step 1: Optimal substructure W e

Prefixes:
X A C G G T
Y A C G C T T A
\ J
|
Notation: denote this prefix by Y,

e Qur sub-problems will be finding LCS’s of prefixes to X and Y.
* Let C[i,j] = length_of _LCS(X, Y;)

B FERFARFETM
- Recipe for applying Dynamic Programming W e AT

ldentify optimal substructure. %

Find a recursive formulation for the length of the longest
common subseqguence.

Use dynamic programming to find the length of the longest
common subsequence.

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual LCS.

If needed, code this up like a reasonable person.

10

B FERFARFETM
T rn THE HONG KONG
Goal W e o e
TECHNOLOGY (GUANGZHOU)
-~

* Write C[i,j] in terms of the solutions to smaller sub-problems

|
| |
X. A C G G A
|
j
A
[\
Y. A C G C T T A

11

B FEHBEREZ (M
T UL Sriversiry o science avo
W O ca S e S LA TECHNOLOGY (GUANGZHOU)
-~

Case 1: X[i] = Y[j]

i
These are

(A \/ the same
A C G G A

j
A
[\

* QOur sub-problems will be finding
YJ' ATCelSsferTT|fAa LCS’s of prefixes to Xand Y.

* Let C[i,j] = length_of_LCS(X, Y;)

 Then C]i,j] =1 + C[i-1,j-1].

e because = A

12

' Two cases

O ErHEA
L wnaversir o scrence o
N
Case 2: X][i] = Y]j]
: These are
(A \ not the
/ same
A C G G T
Xi
J
1
l \
Yj A C G C

* QOur sub-problems will be finding
 Then Cli,j]

LCS’s of prefixes to X and Y.
* Let C[i,j] =length_of LCS(X, Y,)
maX{ C[I_llJ]I C[IIJ_]'] }
* either =

and T is not involved,

and A isnotinvolved,
* (maybe both are not involved, that’s covered by the “or”).

or

13

' Recursive formulation of the optimal solution WEiEese:

X
(0 if i=0o0rj=00

* Cli,jl=qCli-1j-1]+1 ifX[[]=Y[jlapdi, A c G c|T T A
j

\ ‘j Case O

A C A
X G G XACGGT

Y. A CG C T T A Y. A C G C T T A

14

B FERFARFETM
- Recipe for applying Dynamic Programming W e AT

ldentify optimal substructure.

Find a recursive formulation for the length of the longest
common subseqguence.

Use dynamic programming to find the length of the longest
common subsequence.

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual LCS.

If needed, code this up like a reasonable person.

15

B FERFARFETM
o= THE HONG KONG
LCS D P LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
|

* LCS(X, Y):
- C[i,0] =C[0,j]=0foralli=0,...,m, j=0,...n.
—Fori=1,..mandj=1,..,n:
o If X[i] = Y[j]:
- Cli,jl =CJi-1,j-1] +1

Rup,, .
Ming 4
O(hm Me;
— Return C[m,n])
(0 if i=0o0rj=0
Cli,jl={Cli—1j—1]+1 if X[i] = Y[j] andi,j > 0
\

16

B FEHBEREZ (M
3731 THE HONG KONG
umj UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

0 ifi=0o0rj=0
Cli,jl=<cCli—1,j—-1]+1 if X[i] = Y[j] andi,j >0

ololololo
A 0
Y A C T G
C 0
X G 0
G 0

17

' Example

Y

C T G
0|0/ o0
1|11
2 | 212
2 | 2|3
2 | 2|3

B FEHBEREZ (M
3731 THE HONG KONG
umj UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

0 ifi=0o0rj=0
Cli,jl=<Cli—-1,j—-1]+1 if X[i] = Y[j] andi,j >0

So the LCS of X and
Y has length 3.

18

B FERFARFETM
- Recipe for applying Dynamic Programming W e AT

ldentify optimal substructure.

Find a recursive formulation for the length of the longest
common subseqguence.

Use dynamic programming to find the length of the longest

common subsequence. [

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual LCS.

If needed, code this up like a reasonable person.

19

B FERFARFETM
=== THE HONG KONG
Exa m p I e umj UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

0 ifi=0o0rj=0 X A C G G A
Cli,j] = Cli—1,j—1]+1 if X[i] =Y[j] andi,j >0

Y

ololo|o]|o

A ol 1111111

C ol 121|212

X G ol 121|213
G ol 1121213

A 0 12‘2‘3

20

B FERFARFETM
=== THE HONG KONG
Exa m p I e uAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

0 ifi=0o0rj=0 X A C G G A
Cli,j] = Cli—1,j—1]+1 if X[i] =Y[j] andi,j >0

Y
Y A C T G

* Once we’ve filled this in,
we can work backwards.

ololo|o]|o

A ol 1111111

C ol 12212

X G ol 121|213
G ol 1121213

A 0 12‘2‘3

21

B FERFARFETM
=== THE HONG KONG
Exa m p I e uAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

0 ifi=0o0rj=0 X A C G G A
Cli,j] = Cli—1,j—1]+1 if X[i] =Y[j] andi,j >0

Y
Y A C T G

* Once we’ve filled this in,
we can work backwards.

0 0 0 0 0

A 0 1 1 1 1

C 0 1 2 2 2

X G o|1|2]2]3
G 0 1 2 2 3 | That 3 must have come

5 ‘ 5 ‘ 3 from the 3 above it.

22

B FERFARFETM
=== THE HONG KONG
Exa m p I e uAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

0 ifi=0o0rj=0 X A C G G A
Cli,j] = Cli—1,j—1]+1 if X[i] =Y[j] andi,j >0

Y
Y A C T G

* Once we've filled this in,
we can work backwards.

0 0 0 0 0
A 0 1 1 1 1
C 0 1 2 2 2
X G 0 1 2 2 3 | This 3 came from that 2 — G
- 0 1) 5 3 we found a match!
A 0 1 2 ‘ 2 ‘ 3

23

B FERFARFETM
=== THE HONG KONG
Exa m p I e uAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

0 ifi=0o0rj=0 X A C G G A
Cli,j] = Cli—1,j—1]+1 if X[i] =Y[j] andi,j >0

Y
Y A C T G

* Once we’ve filled this in,
we can work backwards.

0 0 0 0 0
A 0 1 1 1 1
C O 11]2 2| 2| That2mayaswell
X e |of1]2fa]s | mrineren G
G 0 1 2 2 3
A 0|12 ‘ 2 ‘ 3

24

' Example

Clijl =

0 if i=0o0rj=0

Cli—1,j—1]1+1 if X[i] = Y[j] andi,j >0
Y

A C T G

0 0 0 0 0

A 0 1 1 1 1

C 1 2 2 2

G 0 1 2 2 3

G 0 1 2 2 3

A 0 1 2 ‘ 2 ‘ 3

Y

Once we've filled this in,
we can work backwards.

o

Uo

EERERAZE (M)

THE HONG KONG
UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

25

B FERFARFETM
=== THE HONG KONG
Exa m p I e uAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

0 ifi=0o0rj=0 X A C G G A
Cli,j] = Cli—1,j—1]+1 if X[i] =Y[j] andi,j >0

Y
Y A C T G

* Once we’ve filled this in,
we can work backwards.

ololo|o]|o
A ol 1111111
C ol 112122
X G ol 121|213 c G
G ol 1121213
A 0 12‘2‘3

26

B FEHBEREZ (M
T THE HONG KONG
uAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

X A C G G A
0 if i=00¢c
Cli,jl=<cCli—1,j—1]+1 if X[i] = Y[j] andi,j >0

Y A C T G

* Once we’ve filled this in,
we can work backwards.

ololololo
A ol 1. 11111
C ol 112 22
X ¢ ol 1121213 A c G
G ol 1121213
This is the LCS!
A ol1121213

27

& FEHBZAZ (M
Findi LCS -
I n I n g a n LA TECHNOLOGY (GUANGZHQOU)
-~

* Good exercise to write out pseudocode for what we just saw!

* Takes time O(mn) to fill the table
e Takes time O(n + m) on top of that to recover the LCS

* Altogether, we can find LCS(X,Y) in time O(mn).

28

B FERFARFETM
- Recipe for applying Dynamic Programming W e AT

ldentify optimal substructure.

Find a recursive formulation for the length of the longest
common subseqguence.

Use dynamic programming to find the length of the longest
common subsequence.

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual LCS. [

If needed, code this up like a reasonable person.

29

B FEREARE(M

=== THE HONG KONG
Ex m LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

InputX‘springtime | Max Size: 10 -+ .
Char Variant: 4 - | +
InputY‘printing | Sequences: Random()
|printi
LCS-LENGTH (X, ¥Y) Execute LCS Length
: - 1 m = length[X]
‘. s Step: Xi='e' not equal to Yi='g' _
i:10|Xi:e =
g lviie b[10, 8]="1" and c[10, 8]=c[9, 8]=6 P
. . See line number 13 and 14 4 do c[i, 0] = O
i o 1 2 3 4 5 6 7 8 oo ol e
6 do c[0, j] = 0
i yl p|| r|| l" n|| t" i| n g 7 for i =1 tom
8 do for j =1 ton
0O x 0 0 0 O O O O o O 9 do if Xi == ¥j
1 s o[rolrofrofrofrofrofrofro 10 then c[i, j] = c[i-1, j-1] + 1
M b[i, j] = ARROW_CORNER
2l pl olR Y €1 «1f €1 €] «1f «1f 1 12 else if c[i-1, j] >= c[i, j-1]
3l o o]l rax2f € 2f <2 €2 «2f 22 13 e e
14 b[i, j] = ARROW_UP
4 il ot r 25 3|« 3f| <3~ 3«33 15 else c[i, jl=c[i, j-1]
R 4 < 16 b[i, j] = ARROW_LEFT
5 n Ot r2f™3 A< 4N 4 < 4 17 e
6 g o[rr2fr3frarafr4ra~s PRINT-LCS(b, X, i, j) Execute PRINT LCS
7 o[t 2]+ 3| +a|SBfle5fes[r5 Rt SR S0
2 then return
gl ot r2f~3| 14 r5|S6leblcb 3 if b[i, j] == ARROW CORNER
o m o|lr1r2]r3|+4a]r5|r6]re]lre & then PRINT-LCS(b, X, 1-1, 3-1)
5 print Xi
0 e olr1fr2fr3[rafr5]r6]re6]re 6 elseif b[i, j] == ARROW_UP
7 then PRINT-LCS (b, X, i-1, j)

http://Ics-demo.sourceforge.net

30

' Our approach actually isn’t so bad W S e

* If we are only interested in the length of the LCS we can do a bit
better on space:

* If we want to recover the LCS, we need to keep the whole table.

than O(mn) time?
— A bit better.

— Try to design it (as your lab work)!

31

5 O SR
What have we learned: U S e S o
f

* We can find LCS(X,Y) in time O(nm)

* We went through the steps of coming up with a dynamic
programming algorithm.

32

' Independent Set

& FEHBZAZ (M
amgg—

= THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

is a set of vertices _

* Given a graph with
so that no pair has weights on the
an edge between vertices...
them.

33

B FERFARFETM
I d d S l JJ .LrJFIiIIEIyEORg?YK&NSGCIENCE AND
naepenae nt Set U oz or scence o
o

* Actually, this problem is NP-complete.

e But if we aIsosjme that the graph is a Q a
é 2
 ©
Problem: G

Atreeisa
connected
graph with no
cycles.

!

34

B FERFARFETM
- Recipe for applying Dynamic Programming W e AT

ldentify optimal substructure. -

Find a recursive formulation for the value of the optimal
solution

Use dynamic programming to find the value of the optimal
solution

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual solution.

If needed, code this up like a reasonable person.

35

' Optimal substructure Wi i

e Subtrees are a natural candidate. m

e There are two cases:
1. The root of this tree is not

in @ maximal independent set. O Q

o f12 3

36

' Case 1: the root is not in a maximal independent set

* Use the optimal solution from Q
these smaller problems.

B FEREARE(M

—'- THE HONG KONG
LAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

—

/l-\
-y \
- ~ — e
\ \\ P
\
Q \

\
/ \‘
I
\ \
1 |
\ i \
// \ | \
/ “ 1 \‘
\ 1
v \
v \
I 1 1
1 \ I \
.' \ \
| 1 | “
I 11 \
I 1 1
1 1 | \
\ P ‘|
\
L — PR !
\ __________ W \

37

' Case 2 : the root is in an maximal independent set W B e

* Below that, use the optimal solution from

these smaller subproblem:s. @ Q

e Then its children can’t be.

\\

\ 4

\] \

\] \

\] \

\ /] \

\] \

1] \
1 1
] 1

]

I
I
4 \

- ~--~-—-—,

~~__-_——

38

B FERFARFETM
- Recipe for applying Dynamic Programming W e AT

ldentify optimal substructure. @

Find a recursive formulation for the value of the optimal
solution.

Use dynamic programming to find the value of the optimal
solution

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual solution.

If needed, code this up like a reasonable person.

39

' Recursive formulation: try 1

O
, ,/"6\\\ I' = ‘\‘
¢ vl
/ HlaY
I 2 il Oh
' AN
* Alu] = max | _é__iz _5)
weight(u) + ZvEu.grandchildrenA[v]
[
O Q
When we implement this, how do e
we keep track of this term?

- I’\\
/ (\ \ / \
] || 1 \ 1
1 1 \| 1
\
\ 1

-

o

Uo

EERERAZE (M)
THE HONG KONG

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

40

' Recursive formulation: try 2 W e

Keep two arrays!

* Let B[u] = A[v] 20N, 1O\

veu.children

e Alu] = max
weight(u) + ZvEu.ChildI‘en B[v] e

\\ —— Nenm=” —— -

41

B FERFARFETM
- Recipe for applying Dynamic Programming W e AT

ldentify optimal substructure.

Find a recursive formulation for the value of the optimal
solution.

4

Use dynamic programming to find the value of the optimal
solution.

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual solution.

If needed, code this up like a reasonable person.

42

B FEHBEREZ (M
= THE HONG KONG

LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

' Dynamic Programming

* MIS_subtree(u):

—if uis a leaf:

* Afu] = weight(u)

e Blu]=0

— else:

e for vin u.children:
— MIS_subtree(v)

e Alu] = max{ weight(u) +

Running time?
We visit each vertex once, and for
every vertex we do O(1) work:
 Make a recursive call
Participate in summations of
parent node
Running time is O(|V|)

* MIS(T):
— MIS_subtree(T.root)
— return A[T.root]

43

B FERFARFETM
- Recipe for applying Dynamic Programming W e AT

ldentify optimal substructure.

Find a recursive formulation for the value of the optimal
solution.

Use dynamic programming to find the value of the optimal

solution. ,

You do this one!

v

If needed, keep track of some additional info so that the
algorithm from Step 3 can find the actual solution.

If needed, code this up like a reasonable person.

44

- What have we learned? W_

* We can find maximal independent sets in trees in time O(|V|) using
dynamic programming!

* For this example, it was natural to implement our DP algorithm in a
top-down way.

45

' Balanced Partition (BP) Problem W e

 We are given n integers [= {kq, k>, ... k,},s.t.0 < k; < K.

* We like to partition them into two sets S; and S, s.t. the difference d of
the total sizes of the two sets is as small as possible

mind s.t.d = | ZiESlki - ZjESzkj |.
51,52

ki=1ky=3ks=4aka=6ks=7

51 = 10 |Sy] = 11
d=]10-11] = 1

46

' Solution

@tem size J

*letM =} k; < nkK.

* m = 0: The best we can hope foris |S;]| =

ey

B FEHBEREZ (M

T THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

g‘—OandSz= M- S;.

47

B FEHBEREZ (M
= THE HONG KONG

LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

' Solution
@tem size 1

*letM =} k; < nkK.

ey

M
0: The best we can hope foris |51 = |- 0and S5, = M - 5.

‘m

' M
*m = 1:If thisis not possible, the next best is |S1| = b‘ -land S, = M- §;.

48

' Solution

.m:

‘m

Omz

.m:

& FEHBZAZ (M
T THE HONG KONG
lej UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

M

0: The best we can hope foris |S1| =
1: If this is not possible, the next best is
2: If this is not possible, the next best is

3: If this is not possible, the next best is

2]

M

2
M
2

M

| 2]

- 0and S, = M- §4.
-land S, = M- S,
- 2and52= M—Sl.

-3and S, = M- §,.

M
e ..tryuptom = b‘ . This is always possible since we have S1= 0,5, = I.

* So, lets check the best we can achieve starting from m = 0.

49

& mrnarsiw
Example 3,k:= 4,k;= 6,ks =7 | B
-~

Possible allocations

HOROE
Can | fill exactly a Given:
knapsack of size 10? @ @
[T_heﬂs\etum problem” J @ Y
: : M = 21, {?‘ = 10

50

' Reduction to the Subsetum Problem (SP) W S

* We reduced BP to the problem SP:

* SP[n, D]: We are given n integers I = {ky,...k,},s.t.0< k; £ K, and
aninteger D < nK. Is there a subset S of them such that >;csk; = D?
(True/False).

51

' Reduction to the Subsetum Problem (SP) W S

e Solution of BP:

M

e Solve BP by finding the smallest value of m = 0,1, .., b‘ for which

M

SP [n, b‘ - m] = True.

* Do we need to solve SP repeatedly (again and again form scratch) to

solve BP?

* Can we reuse the solution of subproblems?

52

B FEHBEREZ (M
° T THE HONG KONG
S o IV I n S P LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

* Write the DP equations for SP.
* \Very similar to knapsack problem.

e Can you guess them?

53

B FEREARE(M
° 37T THE HONG KONG
S O IVI n g S P Ll JJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

givenitems 1..j, isj used to
e Recursion for SP[TL, D] fill X exactly?

SP[j,X] = max {SP[j - 1,X],SP[j - ,X- kj]}, 0<j<n X<D,

1=

SP[j,0]=1,j=0,.,n, SP[0,X>0]=0, SP[k,X<0]=0.
e Solution: SP[n, D].
* Topological sort: j = 0,1,2..,n, X=0,1,..,D.

* Complexity: ?? ->same as Knapsack = 0(nD).

& FEHBZAZ (M
e mrn THE HONG KONG
[0 e G Scence ano
OOOOOOOOOO (GUANGZHOU)
-~

givenitems 1..j, isj used to
e Recursion for SP[TL, D] fill X exactly?

SP[j,X] = max {SP[j - 1,X],SP[j - ,X- kj]}, 0<j<n X<D,

SP[j,01=1,j = 0,.,n, SP[0,X>0]=0, SP[k,X <0] = 0.

Solution for BP:

AM: sum of item sizes J
* Solve SP[n,|M/2]], fill in table of sub-problems.

e Find |argestX = lM/ZJ,lM/ZJ -1,..., s.t SP[].TL,X] = 1.

55

% EERBERZ(TM)
H T'j UNIVERSITY OF SCIENCE AND
Exercise U smvess o scince ano

* Solve BP for item sizes 1,2,3,4. 4[1"’ =10, [M/2] = 5 J
D

SP[j,X]=max{SP[j - 1,X],SP[j - 1,X - kj]},0<j < n,X <
SP[j,01=1,j =0,..,n,SP[0,X >0]= 0,SP[k, X < 0] = 0.

X=0 1 2 3 4 5

56

% EERBERZ(TM)
H T'j UNIVERSITY OF SCIENCE AND
Exercise U smvess o scince ano

* Solve BP for item sizes 1,2,3,4. 4[1"’ =10, [M/2] = 5 J
SP[j,X] =max{SP[j - 1,X],SPlj - ,X- kj]},,0<j<nX<D

SP[j,0]=1,j =0,.,n,SP[0,X>0]= 0,SP[k,X < 0] = O.
X=0 1 2 3 4 5
j=0 1 0 0 0 0 0
1 1 1 0 0 0 0
2 1 1 1 1 0 0
3
4

57

& FEHBZAZ (M
° T THE HONG KONG
(:o n c I u S I o n S LlMJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

* DP is a technique for solving complex optimization problems
computationally.

* Key idea is to decompose a problem into a calculation involving the
independent solution of similar type problems defined on reduced
size systems (recurrence).

* The reduction of the complexity is due to memoization: solving
each subproblem only once and remembering the results.

58

	Slide 1: Dynamic Programming (II)
	Slide 2: Last time
	Slide 3: The goal of this lecture
	Slide 4: Longest Common Subsequence (LCS)
	Slide 5: Longest Common Subsequence
	Slide 6: Longest Common Subsequence
	Slide 7: We sometimes want to find these
	Slide 8: Recipe for applying Dynamic Programming
	Slide 9: Step 1: Optimal substructure
	Slide 10: Recipe for applying Dynamic Programming
	Slide 11: Goal
	Slide 12: Two cases
	Slide 13: Two cases
	Slide 14: Recursive formulation of the optimal solution
	Slide 15: Recipe for applying Dynamic Programming
	Slide 16: LCS DP
	Slide 17: Example
	Slide 18: Example
	Slide 19: Recipe for applying Dynamic Programming
	Slide 20: Example
	Slide 21: Example
	Slide 22: Example
	Slide 23: Example
	Slide 24: Example
	Slide 25: Example
	Slide 26: Example
	Slide 27: Example
	Slide 28: Finding an LCS
	Slide 29: Recipe for applying Dynamic Programming
	Slide 30: Example
	Slide 31: Our approach actually isn’t so bad
	Slide 32: What have we learned?
	Slide 33: Independent Set
	Slide 34: Independent Set
	Slide 35: Recipe for applying Dynamic Programming
	Slide 36: Optimal substructure
	Slide 37: Case 1: the root is not in a maximal independent set
	Slide 38: Case 2 : the root is in an maximal independent set
	Slide 39: Recipe for applying Dynamic Programming
	Slide 40: Recursive formulation: try 1
	Slide 41: Recursive formulation: try 2
	Slide 42: Recipe for applying Dynamic Programming
	Slide 43: Dynamic Programming
	Slide 44: Recipe for applying Dynamic Programming
	Slide 45: What have we learned?
	Slide 46: Balanced Partition (BP) Problem
	Slide 47: Solution
	Slide 48: Solution
	Slide 49: Solution
	Slide 50: 𝑘1 = 1, 𝑘2 = 3, 𝑘3 = 4, 𝑘4 = 6, 𝑘5 = 7
	Slide 51: Reduction to the Subsetum Problem (SP)
	Slide 52: Reduction to the Subsetum Problem (SP)
	Slide 53: Solving SP
	Slide 54: Solving SP
	Slide 55: Solving SP
	Slide 56: Exercise
	Slide 57: Exercise
	Slide 58: Conclusions

