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* Make choices one-at-a-time. | 2] eimiel el o)

e Never look back.

* Hope for/prove the best.




' Today

One example of a greedy algorithm that does not work:
Knapsack again

Three examples of greedy algorithms that do work:
Activity Selection

Job Scheduling
Minimum Spanning Tree
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' Non-example: Unbounded Knapsack W i

ltem: h © b/ i/ %

Weight: 6 2 3 11
Value: 20 8 14 13 35

“ . B 'V
@38 Capacity: 10
% ¢ Capacity:
e ez 63,
-

* Unbounded Knapsack:

* Suppose | have infinite copies of a!l items. i | i | Total weight: 10
* What’s the most valuable way to fill the knapsack? @ @ o« ¢  Total value: 42

* “Greedy” algorithm for unbounded knapsack:

e T o Total weight: 9
* Tacos have the best Value/Weight ratio! i/ i/ i/ Total value: 39
e Keep grabbing tacos!



' Example where greedy works W S ien s
-~
DSAA1001 Class

Play Games

UFUG Class

NCAAINAR Frichee Practice

You can only do one activity at a time, and you want to [

maximize the number of activities that you do.
Prograr

team m What to choose?

weaving class DSAA2043 —

Research e lessons
Project unch Saion Social
activity

time
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* Input:
— Activities a4, a,, ..., a, >
— Start times sy, s,, ..., S, s fi time

— Finish times f,, f,, ..., f,

* Output:
— A way to maximize the number of activities you can do today.

In what order should you greedily add activities?
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In what order: U e
n

* Shortest job first?

D S
e Earliest start time? - - - -

e Earliest finish time? /
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* Pick activity you can add with the smallest finish time.
* Repeat.

7/

time

>
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* Pick activity you can add with the smallest finish time.
* Repeat.

d
.

time

>
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* Pick activity you can add with the smallest finish time.

—
om 8

* Repeat.

%

time

10
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* Pick activity you can add with the smallest finish time.

* Repeat.

o

S g

time

11
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* Pick activity you can add with the smallest finish time.
* Repeat.

7/

- >
time

12
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* Pick activity you can add with the smallest finish time.
* Repeat.

A\ -
a
1 3

time

>

13
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* Pick activity you can add with the smallest finish time.
* Repeat.

- = -
Y
1 - 3 -
Jdy

time

>

14
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* Pick activity you can add with the smallest finish time.
* Repeat.

e i
a
1 |

time

>

15



' Efficiency

* Running time:
—O(n) if the activities are already sorted by finish time.
—Otherwise, O(n log(n)) if you have to sort them first.

B FEREARE(M

16
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1. Does this greedy algorithm for activity selection work?
—Yes

2. Greedy is simple. But why are we getting to it in
week 9 (not earlier)?
—Proving that greedy algorithms work is often not so easy...

3. In general, when are greedy algorithms a good idea?
—When the problem exhibits especially nice optimal substructure.

17



' Back to Activity Selection W e

Why does it work?

 We never rule out an optimal solution
* At the end of the algorithm, we’ve got some solution.
* So it must be optimal.

18



' The Correctness of Activity Selection W i

* Suppose we’ve already chosen a;, and there is still an optimal solution
T* that extends our choices.

19



' The Correctness of Activity Selection W i

* Suppose we’ve already chosen a;, and there is still an optimal solution
T* that extends our choices.

* Now consider the next choice we make, say it’s a,.

* Ifa isin T*, we're still on track.
Greedy algorithm would
choose this one.

1
1
I
_
- dy
— - _
I
1

- >
time

20



' The Correctness of Activity Selection W i

* Suppose we’ve already chosen a;, and there is still an optimal solution
T* that extends our choices.

* Now consider the next choice we make, say it’s a,.

* Ifa isnotinT*...
Greedy algorithm would
choose this one.

1
1
I
_
- dy
— - _
I
1

>

time

21



' The Correctness of Activity Selection W i

*Ifa,isnotin T*..

* Let a; be the activity in T* with the smallest end time.

* Now consider schedule T you get by swapping a; for a,
Greedy algorithm would

1
[ choose this one.
1
-
- -
|
]

Consider this one. _

time

>

22



' The Correctness of Activity Selection W i

*Ifa,isnotin T*..
* Let a; be the activity in T* with the smallest end time.
* Now consider schedule T you get by swapping a; for a,

T
d

7

time

>

23



' The Correctness of Activity Selection W i

* This schedule T is still allowed.
— Since a, has the smallest ending time, it ends before a.
— Thus, a, doesn’t conflict with anything chosen after a;.

 And T is still optimal.

— It has the same number of activities as T*.

24



' The Correctness of Activity Selection W i

* We've just shown:
— If there was an optimal solution that extends the choices we made so far...
— ...then there is an optimal schedule that also contains our next greedy choice

T
d

7

time

>

dy
1
1
I
1

25



' The Correctness of Activity Selection W i

So it’s correct!

 We never rule out an optimal solution
* At the end of the algorithm, we’ve got some solution.
* So it must be optimal.

26
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A common strategy for proving the correctness of greedy
algorithms:

e Make a series of choices.

* Show that, at each step, our choice won’t rule out an optimal
solution at the end of the day.

* After we’ve made all our choices, we haven’t ruled out an optimal
solution, so we must have found one.

27
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* Inductive Hypothesis:
— After greedy choice t, you haven’t ruled out success.

* Base case:
— Success is possible before you make any choices.

* Inductive step:

— If you haven’t ruled out success after choice t, then you won’t rule out
success after choice t+1.

* Conclusion:

— If you reach the end of the algorithm and haven’t ruled out success then you
must have succeeded.

28
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A common strategy for showing we don’t rule out the optimal
solution:

e Suppose that you’re on track to make an optimal solution T*.
— E.g., after you’ve picked activity i, you're still on track.

* Suppose that T* disagrees with your next greedy choice.
— E.g., it doesn’t involve activity k.

* Manipulate T* in order to make a solution T that’s not worse but that
agrees with your greedy choice.

— E.g., swap whatever activity T* did pick next with activity k.

29



' Three Questions ] i
1. Does this greedy algorithm for activity selection work?

—Yes /

2. Greedy is simple. But why are we getting to it in /

week 97
—Proving that greedy algorithms work is often not so easy...

-

3. In general, when are greedy algorithms a good idea?
—When the problem exhibits especially nice optimal substructure.

30
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* Divide-and-conquer:

Big problem

sub-problem sub-problem

sub-sub- sub-sub- sub-sub- sub-sub- sub-sub-
problem problem problem problem problem

31



- Sub-problem graph view 0 s e
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* Dynamic Programming:

Big problem

sub-problem sub-problem sub-problem

sub-sub- sub-sub- sub-sub- sub-sub-
problem problem problem problem

32



- Sub-problem graph view 0 s e
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* Greedy algorithms:

Big problem

sub-problem

sub-sub-
problem

33



- Sub-problem graph view 0 s e
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* Greedy algorithms:

* Not only is there optimal sub-structure:
Big problem « optimal solutions to a problem are made up
from optimal solutions of sub-problems

* but each problem depends on only one
sub-problem.

sub-problem

sub-sub-
problem

34



' Three Questions ] i
1. Does this greedy algorithm for activity selection work?

—Yes /

2. Greedy is simple. But why are we getting to it in /

week 97
—Proving that greedy algorithms work is often not so easy...

3. In general, when are greedy algorithms a good idea? /

—When the problem exhibits especially nice optimal substructure.

35



Another Example: Scheduling

DSAA2043 HW

Personal hygiene

Math HW

Administrative stuff for student club
Econ HW

Do laundry

Sports

Practice musical instrument
Read lecture notes

Have a social life

Sleep

a
———

Uo

EERERAZE (M)

THE HONG KONG
UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

36
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* n tasks
* Task i takes t; hours
* For every hour that passes until task i is done, pay c;

10Ahours

Coswoia e
D>AAZ0a3 FINY until it’s done.
Cost: 3 units per hour

until it’s done.

\ }

|

8 hours

 DSAA2043 HW, then Sleep: costs 10 - 2 + (10 + 8) - 3 = 74 units

e Sleep, then DSAA2043 HW: costs 8 - 3 + (10 + 8) - 2 = 60 units
37
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* This problem breaks up nicely into sub-problems:

Suppose this is the optimal schedule:

____________________________________ -

i

IE_:— JobC .
———————————————————————————————————— =4

Then this must be the optimal :
schedule on just jobs B,C,D. ] If not, then rearranging B,C,D

could make a better schedule
than (A,B,C,D)!

38
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* Seems amenable to a greedy algorithm:

Take the best job first Then solve this problem

(That one’s easy © )

39



' What does “best” mean?

& FEHBZAZ (M
amgg—

leJ THE HONG KONG
e Of these two jobs, which should we do first?

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

X hours

CEEEE——

Cost: z units per
hour until it’s done.
Cost: w units per
\ | hour until it’s done.
|
y hours
e Cost(AthenB)=x-z+(x+vy) -w

AB is better than BA when:

e Cost(BthenA)=y -w+(x+vy) -z

xZ+@x+y)w<yw+ (x+y)z
xZ+xw+yw < yw+xz+ yz
wx < yzZ
w  Z
_S_
y X

40
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cost of delay At
time it takes "

* Choose the job with the biggest

41
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e Suppose you have already chosen some jobs, and haven’t yet ruled out success:

* Then if you choose thg'a next job to be the one left that maximizes t'he ratio cost/time,
you still won’t rule out success. |

* Proof sketch: -

e Say Job B maximizes thls ratio, but it’s not the next job in the opt. soln.
. SW|tch A and B! Nothfng else will change, and we just showed that the cos

of the solution won’t

——— e mm——————

. Repeatiuntil B is first.

e || |ec | YN GEETTEEED

e o o o o e o e e e e e e e e e e e e e e e mm mm mm e e mm mm e e e e e e e e e e

* Now this is an optimal schedule where B is first.

42
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* Inductive Hypothesis:
» After greedy choice t, you haven’t ruled out success.

* Base case:
* Success is possible before you make any choices.

* Inductive step:

* |f you haven’t ruled out success after choice t, then you won’t rule out success
after choice t+1.

 Conclusion:

* |f you reach the end of the algorithm and haven’t ruled out success then you
must have succeeded.

43



' Greedy Scheduling Solution W e

» schedulelobs( JOBS ):
— Sort JOBS in decreasing order by the ratio:

. . —Ci_ _ cost of delaying job i
i~ ~ timejob i takes to complete
— Return JOBS

Running time: O(n log(n))

44
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Minimum Spanning Trees

45



' Minimum Spanning Trees Wi i

* Greedy algorithms for Minimum Spanning Tree.

* Agenda:

1.

2.
3.
4

What is a Minimum Spanning Tree?

Short break to introduce some graph theory tools
Prim’s algorithm

Kruskal’s algorithm

46



' Minimum Spanning Trees

e Say we have an undirected weighted graph

A spanning tree is a tree that connects all of the vertices.

B FEHBEREZ (M

T THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

Atreeis a
connected graph
with no cycles!

47



' Minimum Spanning Trees U esieionc e

e Say we have an undirected weighted graph

The cost of a 3 7/ This is a spanning
spanning tree is tree with cost 67.
the sum of the
weights on the
edges.

A spanning tree is a tree that connects all of the vertices.

48



' Minimum Spanning Trees Wi i

e Say we have an undirected weighted graph

8 7 This is also a
spanning tree,
with cost 37.

A spanning tree is a tree that connects all of the vertices.

49



' Minimum Spanning Trees R e

e Say we have an undirected weighted graph

General def: tree

minimum of minimum cost 2 GOMMEES
¥ ONLY to a GIVEN

\/ : : :
A’'spanning tree is a tree that connects all of the vertices. subset of vertices
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* Network design
— Connecting cities with roads/electricity/telephone/...

* Cluster analysis
— E.g., genetic distance

Branch 1 @
~~ NepalS6 Branch 2

UG05-0454 2 MED2

* Image processing k3 e

@ oo 2.MED1
QP
X

. . O,
— E.g., image segmentation *“@s..

\ L/

1P275 1.ORI 1
. . . MG05-1020 Co%@ 1.IN1
(@)
e Useful primitive )P T 'e fSos Qpgq
0.ANT3
/) vg ® Y AL vi u
: 0.ANT1 0.PE3  0.PE7
cassgy @ @ B42003004 & ®
— For other graph algs
' © 4
L @ Root
XV 0.PE1
Y. pseudotuberculos:
0.PE4 & (4 i lpagsscram e
©O—757v 8
d
: 91001 reors @ O.PE2D
o Branch 0 L
i @ A
O% o O China @® Madagascar @ Germany
1.0RI2 6 ey © © Southeastern Asia @ Nothern Africa @ Former USSR
& @ @ India @ USA © Kurdistan/Turkey
~ @ Central/South Africa @ South America O Other
F1991016 ¢

51
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* Today we’ll see two greedy algorithms.

* In order to prove that these greedy algorithms work, we’ll show
something like:

Suppose that our choices so far
are consistent with an MST.

Then the next greedy choice that we make
is still consistent with an MST.
* This is not the only way to prove that these algorithms work!

52



' Brief Aside — Cuts in Graphs W e

e A cutis a partition of the vertices into two parts:
"\
8 o7 N7

This is the cut “{A,B,D,E} and {C,|,H,G,F}’

53



l

—

' Brief Aside — Cuts in Graphs D s

* One or both of the two parts

ight b disconnected.

L O™ 7

V4
’-
\\.f ~N~-_’/

This is the cut “{B,C,E,G,H} and {A,D,|,F}’
54



' Brief Aside — Cuts in Graphs W e

Let S be a set of edges in G
* We say a cut respects S if no edges in S cross the cut.

* An edge crossing a cut is called light if it has the smallest weight of
any edge crossing the cut. AN

55



' Brief Aside — Cuts in Graphs W e

Let S be a set of edges in G
* We say a cut respects S if no edges in S cross the cut.

* An edge crossing a cut is called light if it has the smallest weight of
any edge crossing the cut. PRI This edge is light

56



' Brief Aside — Cuts in Graphs W e

Lemma

* Let S be a set of edges, and consider a cut that respects S.
e Suppose there is an MST containing S.

 Let {u,v} be a light edge.

e Then there is an MST containing S U {{u,v}} P ‘}his edge is light
\

Aka:

If we haven’t ruled
out the possibility of
success so far, then
adding a light edge
still won’t rule it out. -




' Brief Aside — Cuts in Graphs W e

Proof of Lemma

e Assume that we have:
—a cut that respects S

58



' Brief Aside — Cuts in Graphs W e

Proof of Lemma

e Assume that we have:

—a cut that respects S
— S is part of some MST T.

59



' Brief Aside — Cuts in Graphs W e

Proof of Lemma

e Assume that we have:

—a cut that respects S
— S is part of some MST T.

 Say that {u,v} is light.
— lowest cost crossing the cut

e If {u,v}isin T, we are done.
— T is an MST containing both {u,v}and S.

60



' Brief Aside — Cuts in Graphs W e

Proof of Lemma \‘
e Assume that we have: ‘
—a cut that respects S I

— S is part of some MST T.
 Say that {u,v} is light.

— lowest cost crossing the cut

e Say {u,v}isnotinT.
— Note that adding {u,v} to T will make a cycle.

---s

61



' Brief Aside — Cuts in Graphs W e

Proof of Lemma \
* Assume that we have: ‘ /
—a cut that respects S I
— S is part of some MST T.

 Say that {u,v} is light.

— lowest cost crossing the cut

e Say {u,v}isnotinT.
— Note that adding {u,v} to T will make a cycle.

* There is at least one other edge, {x,y}, in this
cycle crossing the cut. v —

62



' Brief Aside — Cuts in Graphs W e

Proof of Lemma ctd. \
* Consider swapping {u,v} for {x,y}in T. } /
i

— Call the resulting tree T%

63



' Brief Aside — Cuts in Graphs W e

Proof of Lemmma ctd. \‘
* Consider swapping {u,v} for {x,y}in T. }
— Call the resulting tree T". I

* Claim: T is still an MST.

— It is still a spanning tree (why?)
— It has cost at most that of T

— T had minimal cost.

— So T’ does too.

* So T is an MST containing S and {u,v}.

64
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* How do we find one?
* Today we'’ll see two greedy algorithmes.

* The strategy:
— Make a series of choices, adding edges to the tree.

— Show that each edge we add is safe to add:
* we do not rule out the possibility of success
* we will choose light edges crossing cuts and use the Lemma.

— Keep going until we have an MST.

65
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ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.

66
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ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.

67
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ldea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.
3 7/
B C

B z
(i O

68
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ldea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.
3 7/
B C

B z
(i O
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ldea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.
3 7/
B C

B z
(i @\
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' How to find an MST

ldea:

B FEREARE(M
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um) UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
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Start growing a tree, greedily add the shortest edge we can to grow the

tree.

4
(2

\D

0

10

71
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ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.

72
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ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.

73



B FERFARFETM
H f. d M ST l JJ -lrJI—IiIIEIyEORIS\II?YK&NSGCIENCE AND
OW to I n a n tA TECHNOLOGY (GUANGZHOU)

o

ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.
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' Prim’s Algorithm

We've discovered Prim’s algorithm!

* slowPrim( G = (V,E), starting vertex s ):
e MST ={}
e verticesVisited ={s }
e while |verticesVisited| < |V]:
* find the lightest edge {x,v} in E so that:
e X is in verticesVisited
* vis notin verticesVisited
e add {x,v} to MST
e add v to verticesVisited
* return MST

Naively, the running time is O(nm):
* For each of <n-1 iterations of the while
loop:
* Go through all the edges.

75
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Two questions

1. Does it work?
—That is, does it actually return a MST?

2. How do we actually implement this?
—the pseudocode above says “slowPrim”...

76
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Does it work?

* We need to show that our greedy choices don’t rule out success.

* That is, at every step:

— If there exists an MIST that contains all of the edges S we have added so far...

— ...then when we make our next choice {u,v}, there is still an MST containing S
and {u,v}.

* Now it is time to use our lemma!

77
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Lemma
* Let S be a set of edges, and consider a cut that respects S.

e Suppose there is an MST containing S.
* Let {u,v} be a light edge. This edge is light
* Then there is an MST containing S U {{u,v} N




o

Uo

EERERAZE (M)
THE HONG KONG
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e Assume that our choices S so far don’t rule out success

— There is an MST consistent with those choices
How can we use our lemma to show that our

next choice also does not rule out success?

S is the set of edges
selected so far
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e Assume that our choices S so far don’t rule out success
— There is an MST consistent with those choices

e Consider the cut {visited, unvisited}

, S is the set of edges
— This cut respects S.

selected so far

~-_-----_"

80



B FERFARFETM
- ) ° T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

e Assume that our choices S so far don’t rule out success
— There is an MST consistent with those choices

e Consider the cut {visited, unvisited}

, S is the set of edges
— This cut respects S.

selected so far
* The edge we add next is a light edge. 8

— Least weight of any edge crossing the cut.

* By the Lemma, that edge is safe to add

— There is still an MST consistent with
the new set of edges. \
S\

\

~-_-----_"

add this one next —_ ™
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Formally,

* Inductive hypothesis:
— After adding the t'th edge, there exists an MST with the edges added so far.

* Base case:

— In the beginning, with no edges added, there exists an MIST containing all the
(zero) edges added so far. YEP.

* Inductive step:

— If the inductive hypothesis holds for t (aka, the choices so far are safe), then it
holds for t+1 (aka, the next edge we add is safe).

— That’s what we just showed.

e Conclusion:
— After adding the n-1’st edge, there exists an MIST with the edges added so far.

— At this point, we have a spanning tree, so it better be a minimum spanning
tree. 82
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Two questions

1. Does it work?
—That is, does it actually return a MST?

*YES!

2. How do we actually implement this?
—the pseudocode above says “slowPrim”...

33



B FERFARFETM
- ) ° T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Efficient Implementation

* Each vertex keeps:
— the (single-edge) distance from itself to the growing spanning tree

— how to get there.
I’'m 7 away.
Cis the closest.

| can’t get to the
10 tree in one edge

384
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Efficient Implementation

* Each vertex keeps:
— the (single-edge) distance from itself to the growing spanning tree

— how to get there. ’'m 7 away.

* Choose the closest vertex, add it. Cis the closest.

B C D
8 7\

il
14 (&)
| can’t get to the

8 1 ) 10 tree in one edge
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Efficient Implementation

e Each vertex keeps:
— the (single-edge) distance from itself to the growing spanning tree

— how to get there. ,
I'm 7 away.

* Choose the closest vertex, add it. C is the closest.
B C - \D

il
14 (&
I’'m 10 away. Fis

10 the closest.

e Update stored info.

/!

36
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Efficient Implementation Can’t reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min( k[v], weight(u,v) )
e ifk[v] updated, p[v] =u
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Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min( k[v], weight(u,v) )
e ifk[v] updated, p[v] =u
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Every vertex has a key and a parent
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Can’t reach x yet
X is “active”
Can reach x

k[x] is the distance of x
from the growing tree

klx]

p[b] = a, meaning that
a was the vertex that

@®
k[b] comes from.

Until all the vertices are reached:
Activate the unreached vertex u

with the smallest key.
for each of u’s unreached

neighbors v:
k[v] = min( k[v], weight(u,v) )
if k[v] updated, p[v] =u
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Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min( k[v], weight(u,v) )
e ifk[v] updated, p[v] =u
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Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min( k[v], weight(u,v) )
e ifk[v] updated, p[v] =u
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Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min( k[v], weight(u,v) )
e ifk[v] updated, p[v] =u
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Can’t reach x yet
X is “active”
Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min( k[v], weight(u,v) )
e ifk[v] updated, p[v] =u
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Can’t reach x yet
X is “active”
Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min( k[v], weight(u,v) )
e ifk[v] updated, p[v] =u
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Can’t reach x yet
X is “active”
Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min( k[v], weight(u,v) )
e ifk[v] updated, p[v] =u
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Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min( k[v], weight(u,v) )
e ifk[v] updated, p[v] =u
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* Very similar to Dijkstra’s algorithm!

e Differences:

1. Keep track of p[v] in order to return a tree at the end

* But Dijkstra’s can do that too, that’s not a big difference.

2. Instead of d[v] which we update by
* d[v] = min(d[v], d[u] + w(u,v) ) Thing 2-'\5 thence.
we keep k[v] which we update by main differe
* k[v] = min( k[v], w(u,v) )
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Two questions

1. Does it work?
—That is, does it actually return a MST?

* YES!

2. How do we actually implement this?
—the pseudocode above says “slowPrim”...
* Implement it basically the same way we’d implement

Dijkstra!l
98
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That’s not the only greedy algorithm for MST!

99
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whether or not it’s connected to what we have so far?

(D)
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whether or not it’s connected to what we have so far?

(D)
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what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

That won’t
cause a cycle
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what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

That won’t
cause a cycle
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what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

That won’t
cause a cycle
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* slowKruskal(G = (V,E)):
— Sort the edges in E by non-decreasing weight.

— MST ={} - |
— for e in E (in sorted order): .— Mmiterations through this loop

* if adding e to MST won’t cause a cycle:

— add e to MST. T
—return MST

How do we check this?
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At each step of Kruskal’s, we are maintaining a forest.
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At each step of Kruskal’s, we are maintaining a forest.
When we add an edge, we merge two trees:

£FEr,
8 (i

B A D
¢20709]

) PP PN

499999, 4995999, 49225

g o ctes [ g

N N \o )
S, S, CerP
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Union-find data structure
* Used for storing collections of sets

* Supports:
— makeSet(u): create a set {u}
— find(u): return the set that uisin
— union(u,v): merge the set that u is in with the set that visin.

makeSet (xX)

makeSet (y)
makeSet (z)

union (x, V)
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Union-find data structure

* Used for storing collections of sets
* Supports:

— makeSet(u): create a set {u}
— find(u): return the set that uisin

— union(u,v): merge the set that u is in with the set that visin.

makeSet (x)
makeSet (

X

B
Y)

makeSet (z)

union (x, V)
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Union-find data structure

* Used for storing collections of sets

* Supports:
— makeSet(u): create a set {u}
— find(u): return the set that uisin
— union(u,v): merge the set that u is in with the set that visin.

makeSet (x) ’
makeSet (y)
z

makeSet (z)

union (x, V)

find (x)
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e kruskal(G = (V,E)):

— Sort E by weight in non-decreasing order

— MST = {} // initialize an empty tree

—forvinV:

. makeSet(v) // put each vertex in its own tree in the forest

— for (U,V) in E: // go through the edges in sorted order

e if flnd(U) |= flnd(V) //if uand v are not in the same tree

— add (u,v) to MST

— union(u,v) // merge u’s tree with v’s tree

— return MST
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Running time

e Sorting the edges takes O(m log(n))

— In practice, if the weights are small integers we can use radixSort and take
time O(m)

e For the rest:

— n calls to makeSet O(1)
e put each vertexin its own set

— 2m calls to find O(a(n)), amortized
» for each edge, find its endpoints

— n-1 calls to union O(a(n)), amortized

* we will never add more than n-1 edges to the tree,

a(n) is the inverse Ackermann function
(grows extremely slowly)

* Total running time: O(mlog(n)) + For n < 26%3%; (n)=4

* so we Wwill never call union more than n-1 times.
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Does it work?

Leave for your assignment.
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Are they greedy algorithms?

* Prim:
Prim might be a better idea
— Grows a tree. on dense graphs if you can’t
— Time O(mlog(n)) with a red-black tree radixSort edge weights

— Time O(m + nlog(n)) with a Fibonacci heap

e Kruskal:

— Grows a forest. _ _
i i ] ] Kruskal might be a better idea
— Time O(mlog(n)) with a union-find data structure on sparse graphs if you can

— If you can do radixSort on the weights, morally “O(m)” radixSort edge weights
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Are they greedy algorithms? YES, BOTH
* Prim:
_G t Prim might be a better idea
rows a tree. on dense graphs if you can’t
— Time O(mlog(n)) with a red-black tree radixSort edge weights
centric _ . . .
— Time O(m + nlog(n)) with a Fibonacci heap
* Kruskal:
— Grows a forest. _ ,
Edge . . . . Kruskal might be a better idea
centric - Tlme O(mlOg(n)) Wlth d UnlOn-flnd data Structure on sparse graphs if you can
— If you can do radixSort on the weights, morally “O(m)” radixSort edge weights
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e Karger-Klein-Tarjan 1995:

— O(m) time randomized algorithm
* Chazelle 2000:
— O(m- a(n)) time deterministic algorithm
* Pettie-Ramachandran 2002:

The optimal number of comparisons

— O| Yyou need to solve the problem, time deterministic algorithm
whatever that is...
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