EEREXRZ (M)

DSAA 2043 | Design and Analysis of Algorithms I

TECHNOLOGY (GUANGZHOU)

Greedy Algorithms

» Activity selection
» Activity selection version 2
» Minimum Spanning Trees

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

B FERFARFETM

lgorith T b, e

Greedy Algorithms W S ine s
-~

* Make choices one-at-a-time. | 2] eimiel el o)

e Never look back.

* Hope for/prove the best.

' Today

One example of a greedy algorithm that does not work:
Knapsack again

Three examples of greedy algorithms that do work:
Activity Selection

Job Scheduling
Minimum Spanning Tree

B FEREARE(M

' Non-example: Unbounded Knapsack W i

ltem: h © b/ i/ %

Weight: 6 2 3 11
Value: 20 8 14 13 35

“ . B 'V
@38 Capacity: 10
% ¢ Capacity:
e ez 63,
-

* Unbounded Knapsack:

* Suppose | have infinite copies of a!l items. i | i | Total weight: 10
* What’s the most valuable way to fill the knapsack? @ @ o« ¢ Total value: 42

* “Greedy” algorithm for unbounded knapsack:

e T o Total weight: 9
* Tacos have the best Value/Weight ratio! i/ i/ i/ Total value: 39
e Keep grabbing tacos!

' Example where greedy works W S ien s
-~
DSAA1001 Class

Play Games

UFUG Class

NCAAINAR Frichee Practice

You can only do one activity at a time, and you want to [

maximize the number of activities that you do.
Prograr

team m What to choose?

weaving class DSAA2043 —

Research e lessons
Project unch Saion Social
activity

time

B FEHBEREZ (M
Activi I i UL Sriversiry o science avo
Ct I V Ity S e e Ct I O n tA TECHNOLOGY (GUANGZHOU)

-~

* Input:
— Activities a4, a,, ..., a, >
— Start times sy, s,, ..., S, s fi time

— Finish times f,, f,, ..., f,

* Output:
— A way to maximize the number of activities you can do today.

In what order should you greedily add activities?

B FERFARFETM

h d ? l JJ LﬁyEOR;i?YK&NSGCIENCE AND

In what order: U e
n

* Shortest job first?

D S
e Earliest start time? - - - -

e Earliest finish time? /

B FERFARFETM
G d A I 1 h l JJ .lrJI—IiIIEIyEORIS\,II?YK&NSGCIENCE AND
re e y go r I t m LA TECHNOLOGY (GUANGZHOU)

o

* Pick activity you can add with the smallest finish time.
* Repeat.

7/

time

>

B FERFARFETM
G d A I 1 h l JJ .lrJI—IiIIEIyEORIS\,II?YK&NSGCIENCE AND
re e y go r I t m LA TECHNOLOGY (GUANGZHOU)

o

* Pick activity you can add with the smallest finish time.
* Repeat.

d
.

time

>

B FERBFRETIM
e —'- THE HONG KONG
- Greedy Algorithm W iresona s
-~

* Pick activity you can add with the smallest finish time.

—
om 8

* Repeat.

%

time

10

B FERBFRETIM
e —'- THE HONG KONG
- Greedy Algorithm W iresona s
-~

* Pick activity you can add with the smallest finish time.

* Repeat.

o

S g

time

11

B FERFARFETM
G d A I 1 h l JJ -lrJI—IiIIEIyEORIS\II?YK&NSCIENCE AND
re e y go r I t m tA TECHNOLOGY (GUANGZHOU)

o

* Pick activity you can add with the smallest finish time.
* Repeat.

7/

- >
time

12

B FERFARFETM
G d A I 1 h l JJ LﬁyEORI;:?YK&NSCIENCE AND
re e y go r I t m tA TECHNOLOGY (GUANGZHOU)

o

* Pick activity you can add with the smallest finish time.
* Repeat.

A\ -
a
1 3

time

>

13

B FERFARFETM
G dy Al ith U0 s S ence avo
re e y go r I t m LA TECHNOLOGY (GUANGZHQOU)
-

* Pick activity you can add with the smallest finish time.
* Repeat.

- = -
Y
1 - 3 -
Jdy

time

>

14

B FERFARFETM
G dy Al ith U0 s S ence avo
re e y go r I t m LA TECHNOLOGY (GUANGZHQOU)

-

* Pick activity you can add with the smallest finish time.
* Repeat.

e i
a
1 |

time

>

15

' Efficiency

* Running time:
—O(n) if the activities are already sorted by finish time.
—Otherwise, O(n log(n)) if you have to sort them first.

B FEREARE(M

16

% EERBERZ(TM)

T h 1 l J LﬁyEOR;‘I?YK&NS%IENCE AND
ree Questions U onmessirvor scence ano

f

1. Does this greedy algorithm for activity selection work?
—Yes

2. Greedy is simple. But why are we getting to it in
week 9 (not earlier)?
—Proving that greedy algorithms work is often not so easy...

3. In general, when are greedy algorithms a good idea?
—When the problem exhibits especially nice optimal substructure.

17

' Back to Activity Selection W e

Why does it work?

 We never rule out an optimal solution
* At the end of the algorithm, we’ve got some solution.
* So it must be optimal.

18

' The Correctness of Activity Selection W i

* Suppose we’ve already chosen a;, and there is still an optimal solution
T* that extends our choices.

19

' The Correctness of Activity Selection W i

* Suppose we’ve already chosen a;, and there is still an optimal solution
T* that extends our choices.

* Now consider the next choice we make, say it’s a,.

* Ifa isin T*, we're still on track.
Greedy algorithm would
choose this one.

1
1
I
_
- dy
— - _
I
1

- >
time

20

' The Correctness of Activity Selection W i

* Suppose we’ve already chosen a;, and there is still an optimal solution
T* that extends our choices.

* Now consider the next choice we make, say it’s a,.

* Ifa isnotinT*...
Greedy algorithm would
choose this one.

1
1
I
_
- dy
— - _
I
1

>

time

21

' The Correctness of Activity Selection W i

Ifa,isnotin T..

* Let a; be the activity in T* with the smallest end time.

* Now consider schedule T you get by swapping a; for a,
Greedy algorithm would

1
[choose this one.
1
-
- -
|
]

Consider this one. _

time

>

22

' The Correctness of Activity Selection W i

Ifa,isnotin T..
* Let a; be the activity in T* with the smallest end time.
* Now consider schedule T you get by swapping a; for a,

T
d

7

time

>

23

' The Correctness of Activity Selection W i

* This schedule T is still allowed.
— Since a, has the smallest ending time, it ends before a.
— Thus, a, doesn’t conflict with anything chosen after a;.

 And T is still optimal.

— It has the same number of activities as T*.

24

' The Correctness of Activity Selection W i

* We've just shown:
— If there was an optimal solution that extends the choices we made so far...
— ...then there is an optimal schedule that also contains our next greedy choice

T
d

7

time

>

dy
1
1
I
1

25

' The Correctness of Activity Selection W i

So it’s correct!

 We never rule out an optimal solution
* At the end of the algorithm, we’ve got some solution.
* So it must be optimal.

26

B FEHBEREZ (M
A C S U niversivy of science ano
O m m O n t rate gy LA TECHNOLOGY (GUANGZHOU)

A common strategy for proving the correctness of greedy
algorithms:

e Make a series of choices.

* Show that, at each step, our choice won’t rule out an optimal
solution at the end of the day.

* After we’ve made all our choices, we haven’t ruled out an optimal
solution, so we must have found one.

27

B FERFARFETM
A C S UL oniveesi o science an
ommon Strategy 00 e
n

* Inductive Hypothesis:
— After greedy choice t, you haven’t ruled out success.

* Base case:
— Success is possible before you make any choices.

* Inductive step:

— If you haven’t ruled out success after choice t, then you won’t rule out
success after choice t+1.

* Conclusion:

— If you reach the end of the algorithm and haven’t ruled out success then you
must have succeeded.

28

& FEHBZAZ (M
A C S U niversivy of science ano
0 m m O n t rate gy {A TECHNOLOGY (GUANGZHOU)

A common strategy for showing we don’t rule out the optimal
solution:

e Suppose that you’re on track to make an optimal solution T*.
— E.g., after you’ve picked activity i, you're still on track.

* Suppose that T* disagrees with your next greedy choice.
— E.g., it doesn’t involve activity k.

* Manipulate T* in order to make a solution T that’s not worse but that
agrees with your greedy choice.

— E.g., swap whatever activity T* did pick next with activity k.

29

' Three Questions] i
1. Does this greedy algorithm for activity selection work?

—Yes /

2. Greedy is simple. But why are we getting to it in /

week 97
—Proving that greedy algorithms work is often not so easy...

-

3. In general, when are greedy algorithms a good idea?
—When the problem exhibits especially nice optimal substructure.

30

- Sub-problem graph view 0 r s e
-~

* Divide-and-conquer:

Big problem

sub-problem sub-problem

sub-sub- sub-sub- sub-sub- sub-sub- sub-sub-
problem problem problem problem problem

31

- Sub-problem graph view 0 s e
-~

* Dynamic Programming:

Big problem

sub-problem sub-problem sub-problem

sub-sub- sub-sub- sub-sub- sub-sub-
problem problem problem problem

32

- Sub-problem graph view 0 s e
-~

* Greedy algorithms:

Big problem

sub-problem

sub-sub-
problem

33

- Sub-problem graph view 0 s e
-~

* Greedy algorithms:

* Not only is there optimal sub-structure:
Big problem « optimal solutions to a problem are made up
from optimal solutions of sub-problems

* but each problem depends on only one
sub-problem.

sub-problem

sub-sub-
problem

34

' Three Questions] i
1. Does this greedy algorithm for activity selection work?

—Yes /

2. Greedy is simple. But why are we getting to it in /

week 97
—Proving that greedy algorithms work is often not so easy...

3. In general, when are greedy algorithms a good idea? /

—When the problem exhibits especially nice optimal substructure.

35

Another Example: Scheduling

DSAA2043 HW

Personal hygiene

Math HW

Administrative stuff for student club
Econ HW

Do laundry

Sports

Practice musical instrument
Read lecture notes

Have a social life

Sleep

a
———

Uo

EERERAZE (M)

THE HONG KONG
UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

36

B FERFARFETM
) === THE HONG KONG
Sc h e d u I I n g LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

* n tasks
* Task i takes t; hours
* For every hour that passes until task i is done, pay c;

10Ahours

Coswoia e
D>AAZ0a3 FINY until it’s done.
Cost: 3 units per hour

until it’s done.

\ }

|

8 hours

 DSAA2043 HW, then Sleep: costs 10 - 2 + (10 + 8) - 3 = 74 units

e Sleep, then DSAA2043 HW: costs 8 - 3 + (10 + 8) - 2 = 60 units
37

B FERFARFETM

) === THE HONG KONG

SC h e d u I I n g LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

-

* This problem breaks up nicely into sub-problems:

Suppose this is the optimal schedule:

____________________________________ -

i

IE_:— JobC .
———————————————————————————————————— =4

Then this must be the optimal :
schedule on just jobs B,C,D.] If not, then rearranging B,C,D

could make a better schedule
than (A,B,C,D)!

38

B FERFARFETM
) === THE HONG KONG
SC h e d u I I n g LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

* Seems amenable to a greedy algorithm:

Take the best job first Then solve this problem

(That one’s easy ©)

39

' What does “best” mean?

& FEHBZAZ (M
amgg—

leJ THE HONG KONG
e Of these two jobs, which should we do first?

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

X hours

CEEEE——

Cost: z units per
hour until it’s done.
Cost: w units per
\ | hour until it’s done.
|
y hours
e Cost(AthenB)=x-z+(x+vy) -w

AB is better than BA when:

e Cost(BthenA)=y -w+(x+vy) -z

xZ+@x+y)w<yw+ (x+y)z
xZ+xw+yw < yw+xz+ yz
wx < yzZ
w Z
S
y X

40

B FERFARFETM

d f G d l JJ .lrJI—IiIIEIyEORIS\,II?YK&NSGCIENCE AND

I e a O r re e y LA TECHNOLOGY (GUANGZHOU)
o

cost of delay At
time it takes "

* Choose the job with the biggest

41

g EERBERZ(TM)
—'- THE HONG KONG
- Correctness WU invessir o scrence ano
N

e Suppose you have already chosen some jobs, and haven’t yet ruled out success:

* Then if you choose thg'a next job to be the one left that maximizes t'he ratio cost/time,
you still won’t rule out success. |

* Proof sketch: -

e Say Job B maximizes thls ratio, but it’s not the next job in the opt. soln.
. SW|tch A and B! Nothfng else will change, and we just showed that the cos

of the solution won’t

——— e mm——————

. Repeatiuntil B is first.

e || |ec | YN GEETTEEED

e o o o o e o e e e e e e e e e e e e e e e mm mm mm e e mm mm e e e e e e e e e e

* Now this is an optimal schedule where B is first.

42

B FEHBEREZ (M
C UL Sriversiry o science avo
O r re Ct n e S S tﬂ TECHNOLOGY (GUANGZHOU)
-~

* Inductive Hypothesis:
» After greedy choice t, you haven’t ruled out success.

* Base case:
* Success is possible before you make any choices.

* Inductive step:

* |f you haven’t ruled out success after choice t, then you won’t rule out success
after choice t+1.

 Conclusion:

* |f you reach the end of the algorithm and haven’t ruled out success then you
must have succeeded.

43

' Greedy Scheduling Solution W e

» schedulelobs(JOBS):
— Sort JOBS in decreasing order by the ratio:

. . —Ci_ _ cost of delaying job i
i~ ~ timejob i takes to complete
— Return JOBS

Running time: O(n log(n))

44

B FEHBRZ (M
fTS* THE HONG KONG
umj UNIVERSITY OF SCIENCE AND
OOOOOOOOOO (GUANGZHOU)
-~

Minimum Spanning Trees

45

' Minimum Spanning Trees Wi i

* Greedy algorithms for Minimum Spanning Tree.

* Agenda:

1.

2.
3.
4

What is a Minimum Spanning Tree?

Short break to introduce some graph theory tools
Prim’s algorithm

Kruskal’s algorithm

46

' Minimum Spanning Trees

e Say we have an undirected weighted graph

A spanning tree is a tree that connects all of the vertices.

B FEHBEREZ (M

T THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

Atreeis a
connected graph
with no cycles!

47

' Minimum Spanning Trees U esieionc e

e Say we have an undirected weighted graph

The cost of a 3 7/ This is a spanning
spanning tree is tree with cost 67.
the sum of the
weights on the
edges.

A spanning tree is a tree that connects all of the vertices.

48

' Minimum Spanning Trees Wi i

e Say we have an undirected weighted graph

8 7 This is also a
spanning tree,
with cost 37.

A spanning tree is a tree that connects all of the vertices.

49

' Minimum Spanning Trees R e

e Say we have an undirected weighted graph

General def: tree

minimum of minimum cost 2 GOMMEES
¥ ONLY to a GIVEN

\/ : : :
A’'spanning tree is a tree that connects all of the vertices. subset of vertices

B FEREARE(M

=== THE HONG KONG
W M S S LlAJJ UNIVERSITY OF SCIENCE AND
I ® TECHNOLOGY (GUANGZHOU)

* Network design
— Connecting cities with roads/electricity/telephone/...

* Cluster analysis
— E.g., genetic distance

Branch 1 @
~~ NepalS6 Branch 2

UG05-0454 2 MED2

* Image processing k3 e

@ oo 2.MED1
QP
X

. . O,
— E.g., image segmentation *“@s..

\ L/

1P275 1.ORI 1
. . . MG05-1020 Co%@ 1.IN1
(@)
e Useful primitive)P T 'e fSos Qpgq
0.ANT3
/) vg ® Y AL vi u
: 0.ANT1 0.PE3 0.PE7
cassgy @ @ B42003004 & ®
— For other graph algs
' © 4
L @ Root
XV 0.PE1
Y. pseudotuberculos:
0.PE4 & (4 i lpagsscram e
©O—757v 8
d
: 91001 reors @ O.PE2D
o Branch 0 L
i @ A
O% o O China @® Madagascar @ Germany
1.0RI2 6 ey © © Southeastern Asia @ Nothern Africa @ Former USSR
& @ @ India @ USA © Kurdistan/Turkey
~ @ Central/South Africa @ South America O Other
F1991016 ¢

51

B FERFARFETM

H f. d M ST l J IJFILIIEI\I;'EOR;‘I%K&NS%IENCE AND
OW to I n a n LA TECHNOLOGY (GUANGZHOU)

o

* Today we’ll see two greedy algorithms.

* In order to prove that these greedy algorithms work, we’ll show
something like:

Suppose that our choices so far
are consistent with an MST.

Then the next greedy choice that we make
is still consistent with an MST.
* This is not the only way to prove that these algorithms work!

52

' Brief Aside — Cuts in Graphs W e

e A cutis a partition of the vertices into two parts:
"\
8 o7 N7

This is the cut “{A,B,D,E} and {C,|,H,G,F}’

53

l

—

' Brief Aside — Cuts in Graphs D s

* One or both of the two parts

ight b disconnected.

L O™ 7

V4
’-
\\.f ~N~-_’/

This is the cut “{B,C,E,G,H} and {A,D,|,F}’
54

' Brief Aside — Cuts in Graphs W e

Let S be a set of edges in G
* We say a cut respects S if no edges in S cross the cut.

* An edge crossing a cut is called light if it has the smallest weight of
any edge crossing the cut. AN

55

' Brief Aside — Cuts in Graphs W e

Let S be a set of edges in G
* We say a cut respects S if no edges in S cross the cut.

* An edge crossing a cut is called light if it has the smallest weight of
any edge crossing the cut. PRI This edge is light

56

' Brief Aside — Cuts in Graphs W e

Lemma

* Let S be a set of edges, and consider a cut that respects S.
e Suppose there is an MST containing S.

 Let {u,v} be a light edge.

e Then there is an MST containing S U {{u,v}} P ‘}his edge is light
\

Aka:

If we haven’t ruled
out the possibility of
success so far, then
adding a light edge
still won’t rule it out. -

' Brief Aside — Cuts in Graphs W e

Proof of Lemma

e Assume that we have:
—a cut that respects S

58

' Brief Aside — Cuts in Graphs W e

Proof of Lemma

e Assume that we have:

—a cut that respects S
— S is part of some MST T.

59

' Brief Aside — Cuts in Graphs W e

Proof of Lemma

e Assume that we have:

—a cut that respects S
— S is part of some MST T.

 Say that {u,v} is light.
— lowest cost crossing the cut

e If {u,v}isin T, we are done.
— T is an MST containing both {u,v}and S.

60

' Brief Aside — Cuts in Graphs W e

Proof of Lemma \‘
e Assume that we have: ‘
—a cut that respects S I

— S is part of some MST T.
 Say that {u,v} is light.

— lowest cost crossing the cut

e Say {u,v}isnotinT.
— Note that adding {u,v} to T will make a cycle.

---s

61

' Brief Aside — Cuts in Graphs W e

Proof of Lemma \
* Assume that we have: ‘ /
—a cut that respects S I
— S is part of some MST T.

 Say that {u,v} is light.

— lowest cost crossing the cut

e Say {u,v}isnotinT.
— Note that adding {u,v} to T will make a cycle.

* There is at least one other edge, {x,y}, in this
cycle crossing the cut. v —

62

' Brief Aside — Cuts in Graphs W e

Proof of Lemma ctd. \
* Consider swapping {u,v} for {x,y}in T. } /
i

— Call the resulting tree T%

63

' Brief Aside — Cuts in Graphs W e

Proof of Lemmma ctd. \‘
* Consider swapping {u,v} for {x,y}in T. }
— Call the resulting tree T". I

* Claim: T is still an MST.

— It is still a spanning tree (why?)
— It has cost at most that of T

— T had minimal cost.

— So T’ does too.

* So T is an MST containing S and {u,v}.

64

B FERFARFETM

H f. d M ST l J .LrJFIiIIEIyEOR;II?YK&NS%IENCE AND
OW to I n a n LA TECHNOLOGY (GUANGZHOU)

o

* How do we find one?
* Today we'’ll see two greedy algorithmes.

* The strategy:
— Make a series of choices, adding edges to the tree.

— Show that each edge we add is safe to add:
* we do not rule out the possibility of success
* we will choose light edges crossing cuts and use the Lemma.

— Keep going until we have an MST.

65

B FERFARFETM
H f. d M ST l JJ -lrJI—IiIIEIyEORIS\II%Kg:NSGCIENCE AND
OW to I n a n LA TECHNOLOGY (GUANGZHOU)

o

ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.

66

B FERFARFETM
H f. d M ST l JJ -lrJI—IiIIEIyEORIS\II%Kg:NSGCIENCE AND
OW to I n a n LA TECHNOLOGY (GUANGZHOU)

o

ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.

67

B FERFARFETM
H f. d M ST l JJ -lrJI—IiIIEIyEORIS\II%Kg:NSGCIENCE AND
OW to I n a n LA TECHNOLOGY (GUANGZHOU)

o

ldea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.
3 7/
B C

B z
(i O

68

B FERFARFETM
H f. d M ST l JJ -lrJI—IiIIEIyEORIS\lngK&NSGCIENCE AND
OW to I n a n LA TECHNOLOGY (GUANGZHOU)

o

ldea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.
3 7/
B C

B z
(i O

69

B FERFARFETM
H f. d M ST l JJ -lrJI—IiIIEIyEORIS\lngK&NSGCIENCE AND
OW to I n a n LA TECHNOLOGY (GUANGZHOU)

o

ldea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.
3 7/
B C

B z
(i @\

70

' How to find an MST

ldea:

B FEREARE(M

mr THE HONG KONG

um) UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

Start growing a tree, greedily add the shortest edge we can to grow the

tree.

4
(2

\D

0

10

71

B FERFARFETM
H f. d M ST l JJ -lrJI—IiIIEIyEORIS\lngK&NSGCIENCE AND
OW to I n a n LA TECHNOLOGY (GUANGZHOU)

o

ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.

72

B FERFARFETM
H f. d M ST l JJ -lrJI—IiIIEIyEORIS\II?YK&NSGCIENCE AND
OW to I n a n tA TECHNOLOGY (GUANGZHOU)

o

ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.

73

B FERFARFETM
H f. d M ST l JJ -lrJI—IiIIEIyEORIS\II?YK&NSGCIENCE AND
OW to I n a n tA TECHNOLOGY (GUANGZHOU)

o

ldea:

Start growing a tree, greedily add the shortest edge we can to grow the
tree.

74

& FEHBZAZ (M
T THE HONG KONG

LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

' Prim’s Algorithm

We've discovered Prim’s algorithm!

* slowPrim(G = (V,E), starting vertex s):
e MST ={}
e verticesVisited ={s }
e while |verticesVisited| < |V]:
* find the lightest edge {x,v} in E so that:
e X is in verticesVisited
* vis notin verticesVisited
e add {x,v} to MST
e add v to verticesVisited
* return MST

Naively, the running time is O(nm):
* For each of <n-1 iterations of the while
loop:
* Go through all the edges.

75

B FERFARFETM

() ’ e w7 THE HONG KONG

- Prim’s Algorithm W s sms s
-~

Two questions

1. Does it work?
—That is, does it actually return a MST?

2. How do we actually implement this?
—the pseudocode above says “slowPrim”...

76

B FERFARFETM

() ’ e w7 THE HONG KONG

- Prim’s Algorithm W s sms s
-~

Does it work?

* We need to show that our greedy choices don’t rule out success.

* That is, at every step:

— If there exists an MIST that contains all of the edges S we have added so far...

— ...then when we make our next choice {u,v}, there is still an MST containing S
and {u,v}.

* Now it is time to use our lemma!

77

B FERFARFETM
-) ° T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Lemma
* Let S be a set of edges, and consider a cut that respects S.

e Suppose there is an MST containing S.
* Let {u,v} be a light edge. This edge is light
* Then there is an MST containing S U {{u,v} N

o

Uo

EERERAZE (M)
THE HONG KONG
UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

' Prim’s Algorithm

e Assume that our choices S so far don’t rule out success

— There is an MST consistent with those choices
How can we use our lemma to show that our

next choice also does not rule out success?

S is the set of edges
selected so far

B FERFARFETM
-) ° T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

e Assume that our choices S so far don’t rule out success
— There is an MST consistent with those choices

e Consider the cut {visited, unvisited}

, S is the set of edges
— This cut respects S.

selected so far

~-_-----_"

80

B FERFARFETM
-) ° T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

e Assume that our choices S so far don’t rule out success
— There is an MST consistent with those choices

e Consider the cut {visited, unvisited}

, S is the set of edges
— This cut respects S.

selected so far
* The edge we add next is a light edge. 8

— Least weight of any edge crossing the cut.

* By the Lemma, that edge is safe to add

— There is still an MST consistent with
the new set of edges. \
S\

\

~-_-----_"

add this one next —_ ™
81

B FERFARFETM
-) ° T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Formally,

* Inductive hypothesis:
— After adding the t'th edge, there exists an MST with the edges added so far.

* Base case:

— In the beginning, with no edges added, there exists an MIST containing all the
(zero) edges added so far. YEP.

* Inductive step:

— If the inductive hypothesis holds for t (aka, the choices so far are safe), then it
holds for t+1 (aka, the next edge we add is safe).

— That’s what we just showed.

e Conclusion:
— After adding the n-1’st edge, there exists an MIST with the edges added so far.

— At this point, we have a spanning tree, so it better be a minimum spanning
tree. 82

B FERFARFETM

() ’ e w7 THE HONG KONG

- Prim’s Algorithm W s sms s
-~

Two questions

1. Does it work?
—That is, does it actually return a MST?

*YES!

2. How do we actually implement this?
—the pseudocode above says “slowPrim”...

33

B FERFARFETM
-) ° T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Efficient Implementation

* Each vertex keeps:
— the (single-edge) distance from itself to the growing spanning tree

— how to get there.
I’'m 7 away.
Cis the closest.

| can’t get to the
10 tree in one edge

384

B FERFARFETM

() ’ e w7 THE HONG KONG

- Prim’s Algorithm W s sms s
-~

Efficient Implementation

* Each vertex keeps:
— the (single-edge) distance from itself to the growing spanning tree

— how to get there. ’'m 7 away.

* Choose the closest vertex, add it. Cis the closest.

B C D
8 7\

il
14 (&)
| can’t get to the

8 1) 10 tree in one edge

85

B FERFARFETM
-) ° T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Efficient Implementation

e Each vertex keeps:
— the (single-edge) distance from itself to the growing spanning tree

— how to get there. ,
I'm 7 away.

* Choose the closest vertex, add it. C is the closest.
B C - \D

il
14 (&
I’'m 10 away. Fis

10 the closest.

e Update stored info.

/!

36

B FERFARFETM
-) o T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Efficient Implementation Can’t reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min(k[v], weight(u,v))
e ifk[v] updated, p[v] =u

87

B FERFARFETM
-) e 3731 THE HONG KONG
- Prim’s Algorithm U e
-~

Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min(k[v], weight(u,v))
e ifk[v] updated, p[v] =u

88

' Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

BEEMBERZ (M)

a
THE HONG KONG
UNIVERSITY OF SCIENCE AND

U
LAJ TECHNOLOGY (GUANGZHOU)
N

Can’t reach x yet
X is “active”
Can reach x

k[x] is the distance of x
from the growing tree

klx]

p[b] = a, meaning that
a was the vertex that

@®
k[b] comes from.

Until all the vertices are reached:
Activate the unreached vertex u

with the smallest key.
for each of u’s unreached

neighbors v:
k[v] = min(k[v], weight(u,v))
if k[v] updated, p[v] =u

89

B FERFARFETM
-) o T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min(k[v], weight(u,v))
e ifk[v] updated, p[v] =u

90

B FERFARFETM
-) e 3731 THE HONG KONG
- Prim’s Algorithm U e
-~

Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min(k[v], weight(u,v))
e ifk[v] updated, p[v] =u

91

B FERFARFETM
-) o T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min(k[v], weight(u,v))
e ifk[v] updated, p[v] =u

92

' Prim’s Algorithm

Efficient Implementation

Every vertex has a key and a parent

B FEHBEREZ (M
= THE HONG KONG

le} UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

Can’t reach x yet
X is “active”
Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min(k[v], weight(u,v))
e ifk[v] updated, p[v] =u

93

' Prim’s Algorithm

Efficient Implementation

Every vertex has a key and a parent

B FEHBEREZ (M
T THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

Can’t reach x yet
X is “active”
Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min(k[v], weight(u,v))
e ifk[v] updated, p[v] =u

94

' Prim’s Algorithm

Efficient Implementation

Every vertex has a key and a parent

B FEHBEREZ (M
= THE HONG KONG

le} UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

Can’t reach x yet
X is “active”
Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min(k[v], weight(u,v))
e ifk[v] updated, p[v] =u

95

B FERFARFETM
-) o T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Efficient Implementation Can't reach x yet

X is “active”

Every vertex has a key and a parent

Can reach x

I k[x] is the distance of x
[X] from the growing tree

p[b] = a, meaning that
e__@ a was the vertex that

k[b] comes from.

Until all the vertices are reached:

« Activate the unreached vertex u
with the smallest key.
* for each of u’s unreached
neighbors v:
e k[v] = min(k[v], weight(u,v))
e ifk[v] updated, p[v] =u

96

- Prim’s Algorithm e THE HONG KONG

LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

* Very similar to Dijkstra’s algorithm!

e Differences:

1. Keep track of p[v] in order to return a tree at the end

* But Dijkstra’s can do that too, that’s not a big difference.

2. Instead of d[v] which we update by
* d[v] = min(d[v], d[u] + w(u,v)) Thing 2-'\5 thence.
we keep k[v] which we update by main differe
* k[v] = min(k[v], w(u,v))

97

B FERFARFETM
-) ° T THE HONG KONG
- Prim’s Algorithm W s sms s
-~

Two questions

1. Does it work?
—That is, does it actually return a MST?

* YES!

2. How do we actually implement this?
—the pseudocode above says “slowPrim”...
* Implement it basically the same way we’d implement

Dijkstra!l
98

B FERFARFETM
() ’ e w7 THE HONG KONG
- Prim’s Algorithm W s sms s
-~

That’s not the only greedy algorithm for MST!

99

B FERFARFETM
I 151 THE HONG KONG
h h ts um) UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
|

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

(D)

100

B FERFARFETM
I 151 THE HONG KONG
h h ts um) UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
|

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

(D)

101

B FERFARFETM
I 151 THE HONG KONG
h h ts um) UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
|

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

(D)

102

' Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

8

°)

11

()

\D

B FEHBEREZ (M
T THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

14 e

10

103

' Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

8

°)

11

()

\D

B FEHBEREZ (M
T THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

14 e

10

104

' Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

8

°)

11

()

\D

B FEHBEREZ (M
T THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

14 e

10

105

' Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

8

°)

11

()

\D

B FEHBEREZ (M
T THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

14 e

10

106

' Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have

8

°)

11

()

\D

B FEHBEREZ (M
T THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

That won’t
cause a cycle

14 e

10

107

' Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have

8

°)

11

()

\D

B FEHBEREZ (M
T THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

That won’t
cause a cycle

14 e

10

108

B FERFARFETM
w7 THE HONG KONG
T'h hts U0 oS e o
TECHNOLOGY (GUANGZHOU)
-~

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

That won’t
cause a cycle

109

B FERFARFETM
w7 THE HONG KONG
T'h hts U0 oS e o
TECHNOLOGY (GUANGZHOU)
-~

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

That won’t
cause a cycle

110

B FERFARFETM
w7 THE HONG KONG
T'h hts U0 oS e o
TECHNOLOGY (GUANGZHOU)
-~

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

That won’t
cause a cycle

111

B FERFARFETM

) o e THE HONG KONG

- Kruskal’s Algorithm 0 S ersng
n

* slowKruskal(G = (V,E)):
— Sort the edges in E by non-decreasing weight.

— MST ={} - |
— for e in E (in sorted order): .— Mmiterations through this loop

* if adding e to MST won’t cause a cycle:

— add e to MST. T
—return MST

How do we check this?

112

B FERFARFETM
K k I’ A I 1 h l JJ .lrJI—IiIIEIyEORIS\lngK&NSGCIENCE AND
r u S a S g O r It m LA TECHNOLOGY (GUANGZHOU)

o

At each step of Kruskal’s, we are maintaining a forest.

113

B FERFARFETM
K k I’ A I 1 h l JJ -lrJI—IiIIEIyEORIS\II%K&NSGCIENCE AND
r u S a S g O r It m LA TECHNOLOGY (GUANGZHOU)

o

At each step of Kruskal’s, we are maintaining a forest.
When we add an edge, we merge two trees:

£FEr,
8 (i

B A D
¢20709]

) PP PN

499999, 4995999, 49225

g o ctes [g

N N \o)
S, S, CerP

114

B FERFARFETM
K k I’ A I 1 h l JJ .LrJFIiIIEIyEORg?YK&NSGCIENCE AND
r u S a S g O r It m LA TECHNOLOGY (GUANGZHOU)

o

Union-find data structure
* Used for storing collections of sets

* Supports:
— makeSet(u): create a set {u}
— find(u): return the set that uisin
— union(u,v): merge the set that u is in with the set that visin.

makeSet (xX)

makeSet (y)
makeSet (z)

union (x, V)

115

' Kruskal’s Algorithm

B FEREARE(M

Union-find data structure

* Used for storing collections of sets
* Supports:

— makeSet(u): create a set {u}
— find(u): return the set that uisin

— union(u,v): merge the set that u is in with the set that visin.

makeSet (x)
makeSet (

X

B
Y)

makeSet (z)

union (x, V)

116

B FERFARFETM
k |’ A| 1 h U niversivy of science ano
Kruskal’s Algorithm U e e

Union-find data structure

* Used for storing collections of sets

* Supports:
— makeSet(u): create a set {u}
— find(u): return the set that uisin
— union(u,v): merge the set that u is in with the set that visin.

makeSet (x) ’
makeSet (y)
z

makeSet (z)

union (x, V)

find (x)

117

B FERFARFETM

) o e THE HONG KONG

- Kruskal’s Algorithm 0 S ersng
n

e kruskal(G = (V,E)):

— Sort E by weight in non-decreasing order

— MST = {} // initialize an empty tree

—forvinV:

. makeSet(v) // put each vertex in its own tree in the forest

— for (U,V) in E: // go through the edges in sorted order

e if flnd(U) |= flnd(V) //if uand v are not in the same tree

— add (u,v) to MST

— union(u,v) // merge u’s tree with v’s tree

— return MST

118

B FERFARFETM
) o 371 THE HONG KONG
- Kruskal’s Algorithm U e
-~

Running time

e Sorting the edges takes O(m log(n))

— In practice, if the weights are small integers we can use radixSort and take
time O(m)

e For the rest:

— n calls to makeSet O(1)
e put each vertexin its own set

— 2m calls to find O(a(n)), amortized
» for each edge, find its endpoints

— n-1 calls to union O(a(n)), amortized

* we will never add more than n-1 edges to the tree,

a(n) is the inverse Ackermann function
(grows extremely slowly)

* Total running time: O(mlog(n)) + For n < 26%3%; (n)=4

* so we Wwill never call union more than n-1 times.

119

B FERFARFETM
k I’ AI 1 h lJJ.lrJI—IiIIEI\I;'EORIS\lngK&NSGCIENCE AND
Kruskal’s Algorithm U e e
-~

Does it work?

Leave for your assignment.

120

B FEREARE(M

[I THE HONG KONG
le) UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

Are they greedy algorithms?

* Prim:
Prim might be a better idea
— Grows a tree. on dense graphs if you can’t
— Time O(mlog(n)) with a red-black tree radixSort edge weights

— Time O(m + nlog(n)) with a Fibonacci heap

e Kruskal:

— Grows a forest. _ _
i i]] Kruskal might be a better idea
— Time O(mlog(n)) with a union-find data structure on sparse graphs if you can

— If you can do radixSort on the weights, morally “O(m)” radixSort edge weights

121

B FEREARE(M

Comparison W entsnereamer ot
n
Are they greedy algorithms? YES, BOTH
* Prim:
_G t Prim might be a better idea
rows a tree. on dense graphs if you can’t
— Time O(mlog(n)) with a red-black tree radixSort edge weights
centric _ . . .
— Time O(m + nlog(n)) with a Fibonacci heap
* Kruskal:
— Grows a forest. _ ,
Edge Kruskal might be a better idea
centric - Tlme O(mlOg(n)) Wlth d UnlOn-flnd data Structure on sparse graphs if you can
— If you can do radixSort on the weights, morally “O(m)” radixSort edge weights

122

e
Can we do better? U R S Scenee o
N

e Karger-Klein-Tarjan 1995:

— O(m) time randomized algorithm
* Chazelle 2000:
— O(m- a(n)) time deterministic algorithm
* Pettie-Ramachandran 2002:

The optimal number of comparisons

— O| Yyou need to solve the problem, time deterministic algorithm
whatever that is...

123

	Slide 1: Greedy Algorithms
	Slide 2: Greedy Algorithms
	Slide 3: Today
	Slide 4: Non-example: Unbounded Knapsack
	Slide 5: Example where greedy works
	Slide 6: Activity selection
	Slide 7: In what order?
	Slide 8: Greedy Algorithm
	Slide 9: Greedy Algorithm
	Slide 10: Greedy Algorithm
	Slide 11: Greedy Algorithm
	Slide 12: Greedy Algorithm
	Slide 13: Greedy Algorithm
	Slide 14: Greedy Algorithm
	Slide 15: Greedy Algorithm
	Slide 16: Efficiency
	Slide 17: Three Questions
	Slide 18: Back to Activity Selection
	Slide 19: The Correctness of Activity Selection
	Slide 20: The Correctness of Activity Selection
	Slide 21: The Correctness of Activity Selection
	Slide 22: The Correctness of Activity Selection
	Slide 23: The Correctness of Activity Selection
	Slide 24: The Correctness of Activity Selection
	Slide 25: The Correctness of Activity Selection
	Slide 26: The Correctness of Activity Selection
	Slide 27: A Common Strategy
	Slide 28: A Common Strategy
	Slide 29: A Common Strategy
	Slide 30: Three Questions
	Slide 31: Sub-problem graph view
	Slide 32: Sub-problem graph view
	Slide 33: Sub-problem graph view
	Slide 34: Sub-problem graph view
	Slide 35: Three Questions
	Slide 36: Another Example: Scheduling
	Slide 37: Scheduling
	Slide 38: Scheduling
	Slide 39: Scheduling
	Slide 40: What does “best” mean?
	Slide 41: Idea for Greedy
	Slide 42: Correctness
	Slide 43: Correctness
	Slide 44: Greedy Scheduling Solution
	Slide 45: Minimum Spanning Trees
	Slide 46: Minimum Spanning Trees
	Slide 47: Minimum Spanning Trees
	Slide 48: Minimum Spanning Trees
	Slide 49: Minimum Spanning Trees
	Slide 50: Minimum Spanning Trees
	Slide 51: Why MSTs?
	Slide 52: How to find an MST
	Slide 53: Brief Aside – Cuts in Graphs
	Slide 54: Brief Aside – Cuts in Graphs
	Slide 55: Brief Aside – Cuts in Graphs
	Slide 56: Brief Aside – Cuts in Graphs
	Slide 57: Brief Aside – Cuts in Graphs
	Slide 58: Brief Aside – Cuts in Graphs
	Slide 59: Brief Aside – Cuts in Graphs
	Slide 60: Brief Aside – Cuts in Graphs
	Slide 61: Brief Aside – Cuts in Graphs
	Slide 62: Brief Aside – Cuts in Graphs
	Slide 63: Brief Aside – Cuts in Graphs
	Slide 64: Brief Aside – Cuts in Graphs
	Slide 65: How to find an MST
	Slide 66: How to find an MST
	Slide 67: How to find an MST
	Slide 68: How to find an MST
	Slide 69: How to find an MST
	Slide 70: How to find an MST
	Slide 71: How to find an MST
	Slide 72: How to find an MST
	Slide 73: How to find an MST
	Slide 74: How to find an MST
	Slide 75: Prim’s Algorithm
	Slide 76: Prim’s Algorithm
	Slide 77: Prim’s Algorithm
	Slide 78: Prim’s Algorithm
	Slide 79: Prim’s Algorithm
	Slide 80: Prim’s Algorithm
	Slide 81: Prim’s Algorithm
	Slide 82: Prim’s Algorithm
	Slide 83: Prim’s Algorithm
	Slide 84: Prim’s Algorithm
	Slide 85: Prim’s Algorithm
	Slide 86: Prim’s Algorithm
	Slide 87: Prim’s Algorithm
	Slide 88: Prim’s Algorithm
	Slide 89: Prim’s Algorithm
	Slide 90: Prim’s Algorithm
	Slide 91: Prim’s Algorithm
	Slide 92: Prim’s Algorithm
	Slide 93: Prim’s Algorithm
	Slide 94: Prim’s Algorithm
	Slide 95: Prim’s Algorithm
	Slide 96: Prim’s Algorithm
	Slide 97: Prim’s Algorithm
	Slide 98: Prim’s Algorithm
	Slide 99: Prim’s Algorithm
	Slide 100: Thoughts
	Slide 101: Thoughts
	Slide 102: Thoughts
	Slide 103: Thoughts
	Slide 104: Thoughts
	Slide 105: Thoughts
	Slide 106: Thoughts
	Slide 107: Thoughts
	Slide 108: Thoughts
	Slide 109: Thoughts
	Slide 110: Thoughts
	Slide 111: Thoughts
	Slide 112: Kruskal’s Algorithm
	Slide 113: Kruskal’s Algorithm
	Slide 114: Kruskal’s Algorithm
	Slide 115: Kruskal’s Algorithm
	Slide 116: Kruskal’s Algorithm
	Slide 117: Kruskal’s Algorithm
	Slide 118: Kruskal’s Algorithm
	Slide 119: Kruskal’s Algorithm
	Slide 120: Kruskal’s Algorithm
	Slide 121: Comparison
	Slide 122: Comparison
	Slide 123: Can we do better?

