
DSAA 2043 | Design and Analysis of Algorithms

Greedy Algorithms

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

➢Activity selection

➢Activity selection version 2

➢ Minimum Spanning Trees

Greedy Algorithms

2

• Make choices one-at-a-time.

• Never look back.

• Hope for/prove the best.

(grow) partial solutions

Today

3

One example of a greedy algorithm that does not work:
Knapsack again

Three examples of greedy algorithms that do work:
Activity Selection
Job Scheduling
Minimum Spanning Tree

Non-example: Unbounded Knapsack

4

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

• Unbounded Knapsack:
• Suppose I have infinite copies of all items.

• What’s the most valuable way to fill the knapsack?

• “Greedy” algorithm for unbounded knapsack:
• Tacos have the best Value/Weight ratio!

• Keep grabbing tacos!

Total weight: 10
Total value: 42

Total weight: 9
Total value: 39

Example where greedy works

5

Frisbee Practice

Orchestra

DSAA2043
study group

Sleep

Research
Project Lunch Salon

Theory Seminar

Underwater basket
weaving class

UFUG Class

DSAA1001 Class

DSAA2043 Class

Play Games

DSAA2043
Office Hours

Swimming
lessons

Programming
team meeting

Social
activity

time

You can only do one activity at a time, and you want to
maximize the number of activities that you do.

What to choose?

Activity selection

• Input:
– Activities a1, a2, …, an

– Start times s1, s2, …, sn

– Finish times f1, f2, …, fn

• Output:
– A way to maximize the number of activities you can do today.

6

ai

si fi
time

In what order should you greedily add activities?

In what order?

• Shortest job first?

• Earliest start time?

• Earliest finish time?

7

Greedy Algorithm

• Pick activity you can add with the smallest finish time.

• Repeat.

8

a3a1

a4
a2

a5

a7

a6

time

a1

a4

Greedy Algorithm

• Pick activity you can add with the smallest finish time.

• Repeat.

9

a3

a2

a5

a7

a6

time

a4

a1

Greedy Algorithm

• Pick activity you can add with the smallest finish time.

• Repeat.

10

a3

a2

a5

a7

a6

time

a4

a1

Greedy Algorithm

• Pick activity you can add with the smallest finish time.

• Repeat.

11

a3

a2

a5

a7

a6

time

a4

a1

Greedy Algorithm

• Pick activity you can add with the smallest finish time.

• Repeat.

12

a3

a2

a5

a7

a6

time

a6

a4

a1

Greedy Algorithm

• Pick activity you can add with the smallest finish time.

• Repeat.

13

a3

a2

a5

a7

time

a6

a4

a1

Greedy Algorithm

• Pick activity you can add with the smallest finish time.

• Repeat.

14

a3

a2

a5

a7

time

a6

a4

a1

Greedy Algorithm

• Pick activity you can add with the smallest finish time.

• Repeat.

15

a3

a2

a5

a7

time

Efficiency

•Running time:
–O(n) if the activities are already sorted by finish time.
–Otherwise, O(n log(n)) if you have to sort them first.

16

Three Questions

1. Does this greedy algorithm for activity selection work?
– Yes

2. Greedy is simple. But why are we getting to it in
week 9 (not earlier)?

– Proving that greedy algorithms work is often not so easy…

3. In general, when are greedy algorithms a good idea?
– When the problem exhibits especially nice optimal substructure.

17

Back to Activity Selection

Why does it work?

• We never rule out an optimal solution

• At the end of the algorithm, we’ve got some solution.

• So it must be optimal.

18

The Correctness of Activity Selection

• Suppose we’ve already chosen ai, and there is still an optimal solution
T* that extends our choices.

19

ai

a2

a7

a6

time

aj

ak

a3

The Correctness of Activity Selection

• Suppose we’ve already chosen ai, and there is still an optimal solution
T* that extends our choices.

• Now consider the next choice we make, say it’s ak.

• If ak is in T*, we’re still on track.

20

ai

a2

a7

a6

time

aj

ak

a3

Greedy algorithm would
choose this one.

The Correctness of Activity Selection

• Suppose we’ve already chosen ai, and there is still an optimal solution
T* that extends our choices.

• Now consider the next choice we make, say it’s ak.

• If ak is not in T*…

21

ai

a2

a7

a6

aj

ak

a3

Greedy algorithm would
choose this one.

time

The Correctness of Activity Selection

• If ak is not in T*…

• Let aj be the activity in T* with the smallest end time.

• Now consider schedule T you get by swapping aj for ak

22

ai

a2

a7

a6

aj

ak

a3

Consider this one.

Greedy algorithm would
choose this one.

time

The Correctness of Activity Selection

• If ak is not in T*…

• Let aj be the activity in T* with the smallest end time.

• Now consider schedule T you get by swapping aj for ak

23

ai

a2

a7

a6

aj

ak

a3SWAP!

time

The Correctness of Activity Selection

• This schedule T is still allowed.
– Since ak has the smallest ending time, it ends before aj.

– Thus, ak doesn’t conflict with anything chosen after aj.

• And T is still optimal.
– It has the same number of activities as T*.

24

ai

a2

a7

a6

time

aj

ak

a3SWAP!

The Correctness of Activity Selection

• We’ve just shown:
– If there was an optimal solution that extends the choices we made so far…

– …then there is an optimal schedule that also contains our next greedy choice
ak

25

ai

a2

a7

a6

aj

ak

a3SWAP!

time

The Correctness of Activity Selection

So it’s correct!

• We never rule out an optimal solution

• At the end of the algorithm, we’ve got some solution.

• So it must be optimal.

26

A Common Strategy

A common strategy for proving the correctness of greedy
algorithms:

• Make a series of choices.

• Show that, at each step, our choice won’t rule out an optimal
solution at the end of the day.

• After we’ve made all our choices, we haven’t ruled out an optimal
solution, so we must have found one.

27

A Common Strategy

• Inductive Hypothesis:
– After greedy choice t, you haven’t ruled out success.

• Base case:
– Success is possible before you make any choices.

• Inductive step:
– If you haven’t ruled out success after choice t, then you won’t rule out

success after choice t+1.

• Conclusion:
– If you reach the end of the algorithm and haven’t ruled out success then you

must have succeeded.

28

A Common Strategy

A common strategy for showing we don’t rule out the optimal
solution:

• Suppose that you’re on track to make an optimal solution T*.
– E.g., after you’ve picked activity i, you’re still on track.

• Suppose that T* disagrees with your next greedy choice.
– E.g., it doesn’t involve activity k.

• Manipulate T* in order to make a solution T that’s not worse but that
agrees with your greedy choice.

– E.g., swap whatever activity T* did pick next with activity k.

29

Three Questions

1. Does this greedy algorithm for activity selection work?
– Yes

2. Greedy is simple. But why are we getting to it in
week 9?

– Proving that greedy algorithms work is often not so easy…

3. In general, when are greedy algorithms a good idea?
– When the problem exhibits especially nice optimal substructure.

30

Sub-problem graph view

• Divide-and-conquer:

31

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

Sub-problem graph view

• Dynamic Programming:

32

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-problem

Sub-problem graph view

• Greedy algorithms:

33

Big problem

sub-sub-
problem

sub-problem

Sub-problem graph view

• Greedy algorithms:

34

Big problem

sub-sub-
problem

sub-problem

• Not only is there optimal sub-structure:
• optimal solutions to a problem are made up

from optimal solutions of sub-problems

• but each problem depends on only one
sub-problem.

Three Questions

1. Does this greedy algorithm for activity selection work?
– Yes

2. Greedy is simple. But why are we getting to it in
week 9?

– Proving that greedy algorithms work is often not so easy…

3. In general, when are greedy algorithms a good idea?
– When the problem exhibits especially nice optimal substructure.

35

Another Example: Scheduling

36

DSAA2043 HW

Personal hygiene

Math HW

Econ HW

Practice musical instrument

Read lecture notes

Have a social life

Sleep

Administrative stuff for student club

Do laundry

Sports

Scheduling

37

• n tasks

• Task i takes ti hours

• For every hour that passes until task i is done, pay ci

• DSAA2043 HW, then Sleep: costs 10 ⋅ 2 + (10 + 8) ⋅ 3 = 74 units

• Sleep, then DSAA2043 HW: costs 8 ⋅ 3 + (10 + 8) ⋅ 2 = 60 units

DSAA2043 HW

Sleep

10 hours

8 hours

Cost: 2 units per hour
until it’s done.

Cost: 3 units per hour
until it’s done.

Scheduling

• This problem breaks up nicely into sub-problems:

38

Suppose this is the optimal schedule:

Job A Job B Job C Job D

Then this must be the optimal
schedule on just jobs B,C,D.

If not, then rearranging B,C,D
could make a better schedule

than (A,B,C,D)!

Scheduling

39

• Seems amenable to a greedy algorithm:

Job A Job B Job C Job D

Take the best job first Then solve this problem

Job BJob C Job D

Take the best job first Then solve this problem

Job BJob D

Take the best job first

(That one’s easy ☺)

Then solve this problem

What does “best” mean?

• Of these two jobs, which should we do first?

• Cost(A then B) = x ⋅ z + (x + y) ⋅ w

• Cost(B then A) = y ⋅ w + (x + y) ⋅ z

40

Job A

Job B

x hours

y hours

Cost: z units per
hour until it’s done.

Cost: w units per
hour until it’s done.

AB is better than BA when:
𝑥𝑧 + 𝑥 + 𝑦 𝑤 ≤ 𝑦𝑤 + 𝑥 + 𝑦 𝑧
𝑥𝑧 + 𝑥𝑤 + 𝑦𝑤 ≤ 𝑦𝑤 + 𝑥𝑧 + 𝑦𝑧

𝑤𝑥 ≤ 𝑦𝑧
𝑤

𝑦
≤

𝑧

𝑥

Idea for Greedy

• Choose the job with the biggest
cost of delay
time it takes

 ratio.

41

Correctness

42

• Suppose you have already chosen some jobs, and haven’t yet ruled out success:

• Then if you choose the next job to be the one left that maximizes the ratio cost/time,
you still won’t rule out success.

• Proof sketch:
• Say Job B maximizes this ratio, but it’s not the next job in the opt. soln.

• Switch A and B! Nothing else will change, and we just showed that the cost of the solution won’t
increase.

• Repeat until B is first.

• Now this is an optimal schedule where B is first.

Job AJob BJob C Job D

Job AJob B Job C Job D

Job E

Job E

Job A Job BJob C Job DJob E

Exchange Argument

Correctness

43

• Inductive Hypothesis:
• After greedy choice t, you haven’t ruled out success.

• Base case:
• Success is possible before you make any choices.

• Inductive step:
• If you haven’t ruled out success after choice t, then you won’t rule out success

after choice t+1.

• Conclusion:
• If you reach the end of the algorithm and haven’t ruled out success then you

must have succeeded.

Greedy Scheduling Solution

• scheduleJobs(JOBS):
– Sort JOBS in decreasing order by the ratio:

• 𝒓𝒊 =
𝒄𝒊

𝒕𝒊
=

cost of delaying job i

time job i takes to complete

– Return JOBS

Running time: O(n log(n))

44

Jing Tang 45

Minimum Spanning Trees

Minimum Spanning Trees

• Greedy algorithms for Minimum Spanning Tree.

• Agenda:
1. What is a Minimum Spanning Tree?

2. Short break to introduce some graph theory tools

3. Prim’s algorithm

4. Kruskal’s algorithm

46

Minimum Spanning Trees

• Say we have an undirected weighted graph

47

A spanning tree is a tree that connects all of the vertices.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

A tree is a
connected graph
with no cycles!

Minimum Spanning Trees

• Say we have an undirected weighted graph

48

A spanning tree is a tree that connects all of the vertices.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

The cost of a
spanning tree is
the sum of the
weights on the
edges.

This is a spanning
tree with cost 67.

Minimum Spanning Trees

• Say we have an undirected weighted graph

49

A spanning tree is a tree that connects all of the vertices.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

This is also a
spanning tree,
with cost 37.

Minimum Spanning Trees

• Say we have an undirected weighted graph

50

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

A spanning tree is a tree that connects all of the vertices.

minimum of minimum cost
General def: tree
that connects
ONLY to a GIVEN
subset of vertices

Why MSTs?

• Network design
– Connecting cities with roads/electricity/telephone/…

• Cluster analysis
– E.g., genetic distance

• Image processing
– E.g., image segmentation

• Useful primitive
– For other graph algs

51

How to find an MST

• Today we’ll see two greedy algorithms.

• In order to prove that these greedy algorithms work, we’ll show
something like:

Suppose that our choices so far

are consistent with an MST.

Then the next greedy choice that we make

is still consistent with an MST.

• This is not the only way to prove that these algorithms work!

52

Brief Aside – Cuts in Graphs

• A cut is a partition of the vertices into two parts:

53

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

This is the cut “{A,B,D,E} and {C,I,H,G,F}”

Brief Aside – Cuts in Graphs

• One or both of the two parts might be disconnected.

54

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

This is the cut “{B,C,E,G,H} and {A,D,I,F}”

Brief Aside – Cuts in Graphs

Let S be a set of edges in G

• We say a cut respects S if no edges in S cross the cut.

• An edge crossing a cut is called light if it has the smallest weight of
any edge crossing the cut.

55

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Brief Aside – Cuts in Graphs

Let S be a set of edges in G

• We say a cut respects S if no edges in S cross the cut.

• An edge crossing a cut is called light if it has the smallest weight of
any edge crossing the cut.

56

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

This edge is light

Brief Aside – Cuts in Graphs

Lemma

• Let S be a set of edges, and consider a cut that respects S.

• Suppose there is an MST containing S.

• Let {u,v} be a light edge.

• Then there is an MST containing S ∪ {{u,v}}

57

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

This edge is light

Aka:

If we haven’t ruled
out the possibility of
success so far, then
adding a light edge
still won’t rule it out.

Brief Aside – Cuts in Graphs

Proof of Lemma

• Assume that we have:
– a cut that respects S

58

Brief Aside – Cuts in Graphs

Proof of Lemma

• Assume that we have:
– a cut that respects S

– S is part of some MST T.

59

Brief Aside – Cuts in Graphs

Proof of Lemma

• Assume that we have:
– a cut that respects S

– S is part of some MST T.

• Say that {u,v} is light.
– lowest cost crossing the cut

• If {u,v} is in T, we are done.
– T is an MST containing both {u,v} and S.

60

vu

Brief Aside – Cuts in Graphs

Proof of Lemma

• Assume that we have:
– a cut that respects S

– S is part of some MST T.

• Say that {u,v} is light.
– lowest cost crossing the cut

• Say {u,v} is not in T.
– Note that adding {u,v} to T will make a cycle.

61

u

v

Brief Aside – Cuts in Graphs

Proof of Lemma

• Assume that we have:
– a cut that respects S

– S is part of some MST T.

• Say that {u,v} is light.
– lowest cost crossing the cut

• Say {u,v} is not in T.
– Note that adding {u,v} to T will make a cycle.

• There is at least one other edge, {x,y}, in this
cycle crossing the cut.

62

yx

u

v

Brief Aside – Cuts in Graphs

Proof of Lemma ctd.

• Consider swapping {u,v} for {x,y} in T.
– Call the resulting tree T’.

63

yx

u

v

Exchange Argument

Brief Aside – Cuts in Graphs

Proof of Lemma ctd.

• Consider swapping {u,v} for {x,y} in T.
– Call the resulting tree T’.

• Claim: T’ is still an MST.
– It is still a spanning tree (why?)

– It has cost at most that of T

– T had minimal cost.

– So T’ does too.

• So T’ is an MST containing S and {u,v}.

64

yx

u

v

Verification (easy)

How to find an MST

• How do we find one?

• Today we’ll see two greedy algorithms.

• The strategy:
– Make a series of choices, adding edges to the tree.

– Show that each edge we add is safe to add:
• we do not rule out the possibility of success

• we will choose light edges crossing cuts and use the Lemma.

– Keep going until we have an MST.

65

How to find an MST

Idea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.

66

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

How to find an MST

Idea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.

67

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

How to find an MST

Idea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.

68

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

How to find an MST

Idea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.

69

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

How to find an MST

Idea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.

70

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

How to find an MST

Idea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.

71

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

How to find an MST

Idea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.

72

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

How to find an MST

Idea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.

73

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

How to find an MST

Idea:
Start growing a tree, greedily add the shortest edge we can to grow the
tree.

74

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Prim’s Algorithm

We’ve discovered Prim’s algorithm!

75

• slowPrim(G = (V,E), starting vertex s):

• MST = {}

• verticesVisited = { s }

• while |verticesVisited| < |V|:

• find the lightest edge {x,v} in E so that:

• x is in verticesVisited

• v is not in verticesVisited

• add {x,v} to MST

• add v to verticesVisited

• return MST

Naively, the running time is O(nm):
• For each of ≤n-1 iterations of the while

loop:
• Go through all the edges.

Prim’s Algorithm

Two questions

1. Does it work?
– That is, does it actually return a MST?

2. How do we actually implement this?
– the pseudocode above says “slowPrim”…

76

Prim’s Algorithm

Does it work?

• We need to show that our greedy choices don’t rule out success.

• That is, at every step:
– If there exists an MST that contains all of the edges S we have added so far…

– …then when we make our next choice {u,v}, there is still an MST containing S
and {u,v}.

• Now it is time to use our lemma!

77

Prim’s Algorithm

Lemma

• Let S be a set of edges, and consider a cut that respects S.

• Suppose there is an MST containing S.

• Let {u,v} be a light edge.

• Then there is an MST containing S ∪ {{u,v}}

78

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

This edge is light

Prim’s Algorithm

• Assume that our choices S so far don’t rule out success
– There is an MST consistent with those choices

79

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

S is the set of edges
selected so far

How can we use our lemma to show that our
next choice also does not rule out success?

Prim’s Algorithm

• Assume that our choices S so far don’t rule out success
– There is an MST consistent with those choices

• Consider the cut {visited, unvisited}
– This cut respects S.

80

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

S is the set of edges
selected so far

Prim’s Algorithm

• Assume that our choices S so far don’t rule out success
– There is an MST consistent with those choices

• Consider the cut {visited, unvisited}
– This cut respects S.

• The edge we add next is a light edge.
– Least weight of any edge crossing the cut.

• By the Lemma, that edge is safe to add
– There is still an MST consistent with

the new set of edges.

81

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

S is the set of edges
selected so far

add this one next

Prim’s Algorithm

Formally,

• Inductive hypothesis:
– After adding the t’th edge, there exists an MST with the edges added so far.

• Base case:
– In the beginning, with no edges added, there exists an MST containing all the

(zero) edges added so far. YEP.

• Inductive step:
– If the inductive hypothesis holds for t (aka, the choices so far are safe), then it

holds for t+1 (aka, the next edge we add is safe).

– That’s what we just showed.

• Conclusion:
– After adding the n-1’st edge, there exists an MST with the edges added so far.

– At this point, we have a spanning tree, so it better be a minimum spanning
tree. 82

Prim’s Algorithm

Two questions

1. Does it work?
– That is, does it actually return a MST?

•YES!

2. How do we actually implement this?
– the pseudocode above says “slowPrim”…

83

Prim’s Algorithm

Efficient Implementation
• Each vertex keeps:

– the (single-edge) distance from itself to the growing spanning tree

– how to get there.

84

I’m 7 away.
C is the closest.

I can’t get to the
tree in one edge

H G F

DCB

A I E

7
9

10

14
4

2

2

1
7 68

11

8
4

Prim’s Algorithm

Efficient Implementation
• Each vertex keeps:

– the (single-edge) distance from itself to the growing spanning tree

– how to get there.

• Choose the closest vertex, add it.

85

I’m 7 away.
C is the closest.

I can’t get to the
tree in one edge

H G F

DCB

A I E

7
9

10

14
4

2

2

1
7 68

11

8
4

Prim’s Algorithm

Efficient Implementation
• Each vertex keeps:

– the (single-edge) distance from itself to the growing spanning tree

– how to get there.

• Choose the closest vertex, add it.

• Update stored info.

86

I’m 7 away.
C is the closest.

I’m 10 away. F is
the closest.

H G F

DCB

A I E

7
9

10

14
4

2

2

1
7 68

11

8
4

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

87

H G F

DCB

A I E

7
9

10

14
4

2

2

1

7 6
8

11

8
4

∞

0

∞ ∞

∞

∞∞∞

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

∞

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

88

H G F

DCB

A I E

7
9

10

14
4

2

2

1

7 6
8

11

8
4

∞

0

∞ ∞

∞

∞∞∞

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

∞

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

89

H G F

DCB

A I E

7
9

10

14
4

2

2

1

7 6
8

11

8
4

4

0

∞ ∞

∞

∞∞8

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

∞

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

90

H G F

DCB

A I E

7
9

10

14
4

2

2

1

7 6
8

11

8
4

4

0

∞ ∞

∞

∞∞8

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

∞

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

91

H G F

DCB

A I E

7
9

10

14
4

2

2

1

7 6
8

11

8

4

4

0

8 ∞

∞

∞∞8

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

∞

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

92

H G F

DCB

A I E

7
9

10

14
4

2

2

1

7 6
8

11

8

4

4

0

8 ∞

∞

∞∞8

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

∞

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

93

H G F

DCB

A I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

4

0

8 7

∞

4∞8

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

2

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

94

H G F

DCB

A I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

4

0

8 7

∞

4∞8

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

2

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

95

H G F

DCB

A I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

4

0

8 7

∞

467

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

2

Prim’s Algorithm

Efficient Implementation
Every vertex has a key and a parent

96

H G F

DCB

A I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

4

0

8 7

∞

467

x Can’t reach x yet

x is “active”

Can reach x
x

x

𝑘[x]
k[x] is the distance of x
from the growing tree

a b
p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

• Activate the unreached vertex u
with the smallest key.

• for each of u’s unreached
neighbors v:
• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

2

etc.

Prim’s Algorithm

• Very similar to Dijkstra’s algorithm!

• Differences:
1. Keep track of p[v] in order to return a tree at the end

• But Dijkstra’s can do that too, that’s not a big difference.

2. Instead of d[v] which we update by
• d[v] = min(d[v], d[u] + w(u,v))

 we keep k[v] which we update by
• k[v] = min(k[v], w(u,v))

97

Prim’s Algorithm

Two questions

1. Does it work?
– That is, does it actually return a MST?

• YES!

2. How do we actually implement this?
– the pseudocode above says “slowPrim”…

• Implement it basically the same way we’d implement
Dijkstra!

98

Prim’s Algorithm

That’s not the only greedy algorithm for MST!

99

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

100

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

101

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

102

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

103

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

104

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

105

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

106

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

107

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

That won’t
cause a cycle78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

108

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

That won’t
cause a cycle78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

109

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

That won’t
cause a cycle78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

110

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

That won’t
cause a cycle78

Thoughts

what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

111

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

That won’t
cause a cycle78

Kruskal’s Algorithm

• slowKruskal(G = (V,E)):
– Sort the edges in E by non-decreasing weight.

– MST = {}

– for e in E (in sorted order):

• if adding e to MST won’t cause a cycle:

– add e to MST.

– return MST

112

m iterations through this loop

How do we check this?

Kruskal’s Algorithm

At each step of Kruskal’s, we are maintaining a forest.

113

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

78

Kruskal’s Algorithm

At each step of Kruskal’s, we are maintaining a forest.

When we add an edge, we merge two trees:

114

DCB

A

H G F

I E

9

10

14
4

2

2

1

7 6
8

11

4

78

Kruskal’s Algorithm

Union-find data structure

• Used for storing collections of sets

• Supports:
– makeSet(u): create a set {u}

– find(u): return the set that u is in

– union(u,v): merge the set that u is in with the set that v is in.

115

makeSet(x)

makeSet(y)

makeSet(z)

union(x,y)

x
y

z

Kruskal’s Algorithm

Union-find data structure

• Used for storing collections of sets

• Supports:
– makeSet(u): create a set {u}

– find(u): return the set that u is in

– union(u,v): merge the set that u is in with the set that v is in.

116

makeSet(x)

makeSet(y)

makeSet(z)

union(x,y)

x y

z

Kruskal’s Algorithm

Union-find data structure

• Used for storing collections of sets

• Supports:
– makeSet(u): create a set {u}

– find(u): return the set that u is in

– union(u,v): merge the set that u is in with the set that v is in.

117

makeSet(x)

makeSet(y)

makeSet(z)

union(x,y)

find(x)

x y

z

Kruskal’s Algorithm

• kruskal(G = (V,E)):
– Sort E by weight in non-decreasing order

– MST = {} // initialize an empty tree

– for v in V:
• makeSet(v) // put each vertex in its own tree in the forest

– for (u,v) in E: // go through the edges in sorted order

• if find(u) != find(v): // if u and v are not in the same tree

– add (u,v) to MST

– union(u,v) // merge u’s tree with v’s tree

– return MST

118

Kruskal’s Algorithm

Running time

• Sorting the edges takes O(m log(n))
– In practice, if the weights are small integers we can use radixSort and take

time O(m)

• For the rest:
– n calls to makeSet

• put each vertex in its own set

– 2m calls to find
• for each edge, find its endpoints

– n-1 calls to union
• we will never add more than n-1 edges to the tree,

• so we will never call union more than n-1 times.

• Total running time: O(mlog(n))
119

O(1)

O(𝛼(n)), amortized

O(𝛼(n)), amortized

α(n) is the inverse Ackermann function
(grows extremely slowly)
• For n ≤ 265536: α(n)=4

Kruskal’s Algorithm

Does it work?

Leave for your assignment.

120

Comparison

• Prim:
– Grows a tree.

– Time O(mlog(n)) with a red-black tree

– Time O(m + nlog(n)) with a Fibonacci heap

• Kruskal:
– Grows a forest.

– Time O(mlog(n)) with a union-find data structure

– If you can do radixSort on the weights, morally “O(m)”

121

Prim might be a better idea
on dense graphs if you can’t

radixSort edge weights

Kruskal might be a better idea
on sparse graphs if you can

radixSort edge weights

Are they greedy algorithms?

Comparison

• Prim:
– Grows a tree.

– Time O(mlog(n)) with a red-black tree

– Time O(m + nlog(n)) with a Fibonacci heap

• Kruskal:
– Grows a forest.

– Time O(mlog(n)) with a union-find data structure

– If you can do radixSort on the weights, morally “O(m)”

122

Prim might be a better idea
on dense graphs if you can’t

radixSort edge weights

Kruskal might be a better idea
on sparse graphs if you can

radixSort edge weights

Are they greedy algorithms? YES, BOTH

Node
centric

Edge
centric

Can we do better?

• Karger-Klein-Tarjan 1995:
– O(m) time randomized algorithm

• Chazelle 2000:
– O(m⋅ 𝛼(𝑛)) time deterministic algorithm

• Pettie-Ramachandran 2002:

– O time deterministic algorithm

123

The optimal number of comparisons
you need to solve the problem,

whatever that is…

	Slide 1: Greedy Algorithms
	Slide 2: Greedy Algorithms
	Slide 3: Today
	Slide 4: Non-example: Unbounded Knapsack
	Slide 5: Example where greedy works
	Slide 6: Activity selection
	Slide 7: In what order?
	Slide 8: Greedy Algorithm
	Slide 9: Greedy Algorithm
	Slide 10: Greedy Algorithm
	Slide 11: Greedy Algorithm
	Slide 12: Greedy Algorithm
	Slide 13: Greedy Algorithm
	Slide 14: Greedy Algorithm
	Slide 15: Greedy Algorithm
	Slide 16: Efficiency
	Slide 17: Three Questions
	Slide 18: Back to Activity Selection
	Slide 19: The Correctness of Activity Selection
	Slide 20: The Correctness of Activity Selection
	Slide 21: The Correctness of Activity Selection
	Slide 22: The Correctness of Activity Selection
	Slide 23: The Correctness of Activity Selection
	Slide 24: The Correctness of Activity Selection
	Slide 25: The Correctness of Activity Selection
	Slide 26: The Correctness of Activity Selection
	Slide 27: A Common Strategy
	Slide 28: A Common Strategy
	Slide 29: A Common Strategy
	Slide 30: Three Questions
	Slide 31: Sub-problem graph view
	Slide 32: Sub-problem graph view
	Slide 33: Sub-problem graph view
	Slide 34: Sub-problem graph view
	Slide 35: Three Questions
	Slide 36: Another Example: Scheduling
	Slide 37: Scheduling
	Slide 38: Scheduling
	Slide 39: Scheduling
	Slide 40: What does “best” mean?
	Slide 41: Idea for Greedy
	Slide 42: Correctness
	Slide 43: Correctness
	Slide 44: Greedy Scheduling Solution
	Slide 45: Minimum Spanning Trees
	Slide 46: Minimum Spanning Trees
	Slide 47: Minimum Spanning Trees
	Slide 48: Minimum Spanning Trees
	Slide 49: Minimum Spanning Trees
	Slide 50: Minimum Spanning Trees
	Slide 51: Why MSTs?
	Slide 52: How to find an MST
	Slide 53: Brief Aside – Cuts in Graphs
	Slide 54: Brief Aside – Cuts in Graphs
	Slide 55: Brief Aside – Cuts in Graphs
	Slide 56: Brief Aside – Cuts in Graphs
	Slide 57: Brief Aside – Cuts in Graphs
	Slide 58: Brief Aside – Cuts in Graphs
	Slide 59: Brief Aside – Cuts in Graphs
	Slide 60: Brief Aside – Cuts in Graphs
	Slide 61: Brief Aside – Cuts in Graphs
	Slide 62: Brief Aside – Cuts in Graphs
	Slide 63: Brief Aside – Cuts in Graphs
	Slide 64: Brief Aside – Cuts in Graphs
	Slide 65: How to find an MST
	Slide 66: How to find an MST
	Slide 67: How to find an MST
	Slide 68: How to find an MST
	Slide 69: How to find an MST
	Slide 70: How to find an MST
	Slide 71: How to find an MST
	Slide 72: How to find an MST
	Slide 73: How to find an MST
	Slide 74: How to find an MST
	Slide 75: Prim’s Algorithm
	Slide 76: Prim’s Algorithm
	Slide 77: Prim’s Algorithm
	Slide 78: Prim’s Algorithm
	Slide 79: Prim’s Algorithm
	Slide 80: Prim’s Algorithm
	Slide 81: Prim’s Algorithm
	Slide 82: Prim’s Algorithm
	Slide 83: Prim’s Algorithm
	Slide 84: Prim’s Algorithm
	Slide 85: Prim’s Algorithm
	Slide 86: Prim’s Algorithm
	Slide 87: Prim’s Algorithm
	Slide 88: Prim’s Algorithm
	Slide 89: Prim’s Algorithm
	Slide 90: Prim’s Algorithm
	Slide 91: Prim’s Algorithm
	Slide 92: Prim’s Algorithm
	Slide 93: Prim’s Algorithm
	Slide 94: Prim’s Algorithm
	Slide 95: Prim’s Algorithm
	Slide 96: Prim’s Algorithm
	Slide 97: Prim’s Algorithm
	Slide 98: Prim’s Algorithm
	Slide 99: Prim’s Algorithm
	Slide 100: Thoughts
	Slide 101: Thoughts
	Slide 102: Thoughts
	Slide 103: Thoughts
	Slide 104: Thoughts
	Slide 105: Thoughts
	Slide 106: Thoughts
	Slide 107: Thoughts
	Slide 108: Thoughts
	Slide 109: Thoughts
	Slide 110: Thoughts
	Slide 111: Thoughts
	Slide 112: Kruskal’s Algorithm
	Slide 113: Kruskal’s Algorithm
	Slide 114: Kruskal’s Algorithm
	Slide 115: Kruskal’s Algorithm
	Slide 116: Kruskal’s Algorithm
	Slide 117: Kruskal’s Algorithm
	Slide 118: Kruskal’s Algorithm
	Slide 119: Kruskal’s Algorithm
	Slide 120: Kruskal’s Algorithm
	Slide 121: Comparison
	Slide 122: Comparison
	Slide 123: Can we do better?

