DSAA 2043 | Design and Analysis of Algorithms

Greedy Algorithms

Activity selection
 Activity selection version 2
 Minimum Spanning Trees

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

• Make choices one-at-a-time.

(grow) partial solutions

- Never look back.
- Hope for/prove the best.

One example of a greedy algorithm that does not work: Knapsack again

Today

Three examples of greedy algorithms that do work: Activity Selection Job Scheduling Minimum Spanning Tree

Non-example: Unbounded Knapsack

- Unbounded Knapsack:
 - Suppose I have infinite copies of all items.
 - What's the most valuable way to fill the knapsack?

- "Greedy" algorithm for unbounded knapsack:
 - Tacos have the best Value/Weight ratio!
 - Keep grabbing tacos!

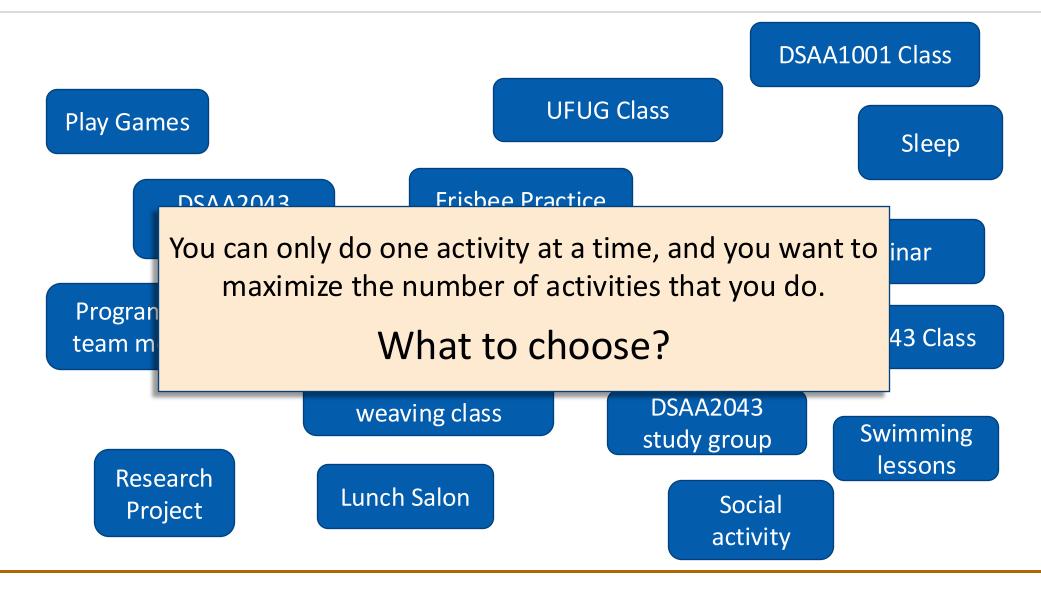
Total weight: 9

Total weight: 10

Total value: 42

Total value: 39

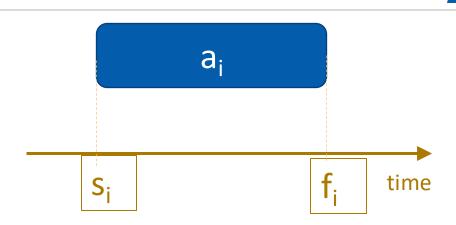
Example where greedy works



Activity selection

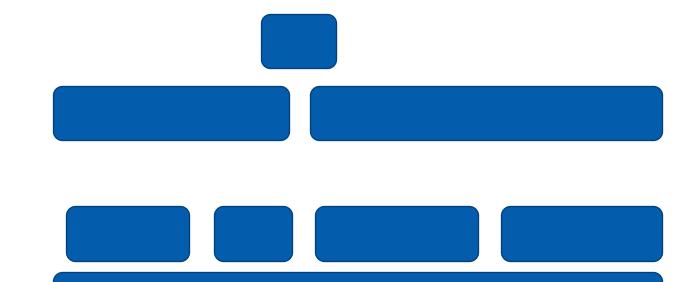
- Input:
 - Activities a₁, a₂, ..., a_n
 - Start times s₁, s₂, ..., s_n
 - Finish times f₁, f₂, ..., f_n
- Output:
 - A way to maximize the number of activities you can do today.

In what order should you greedily add activities?



In what order?

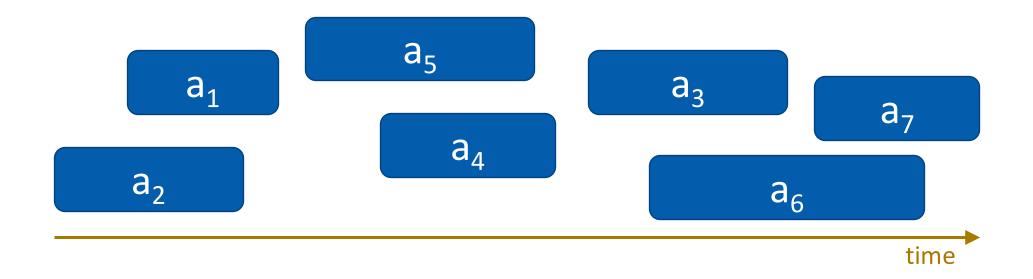
• Shortest job first?



• Earliest start time?

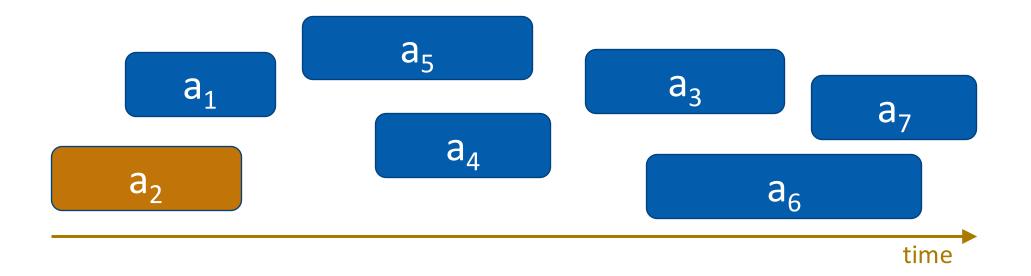
• Earliest finish time?

- Pick activity you can add with the smallest finish time.
- Repeat.



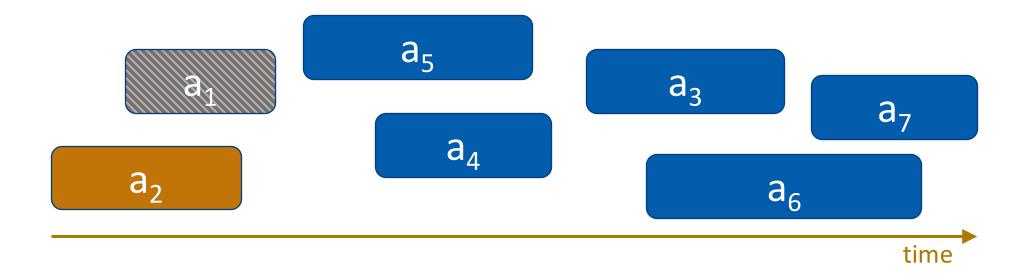
NCE AND NG7HOU)

- Pick activity you can add with the smallest finish time.
- Repeat.



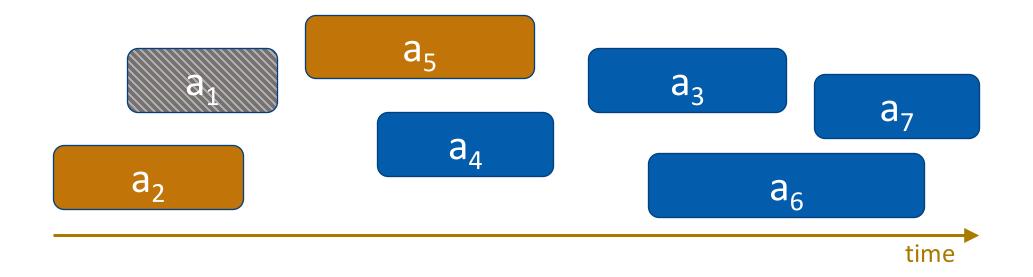
NCE AND NG7HOU)

- Pick activity you can add with the smallest finish time.
- Repeat.

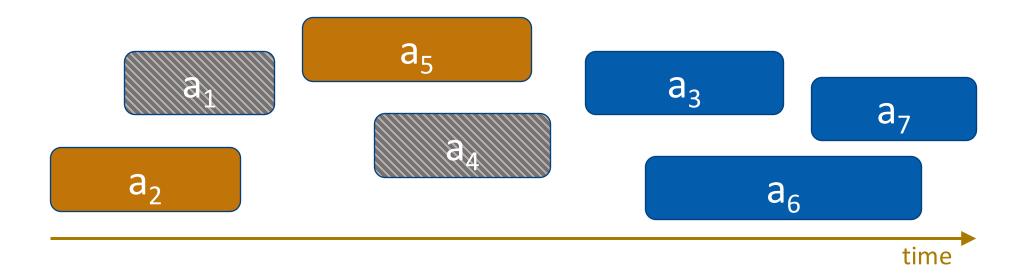


NCE AND NG7HOU)

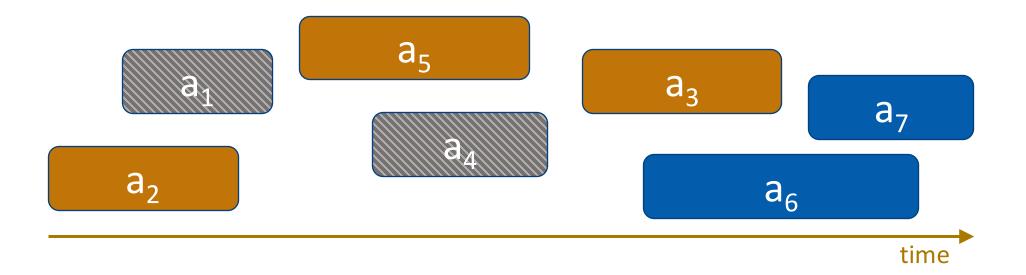
- Pick activity you can add with the smallest finish time.
- Repeat.



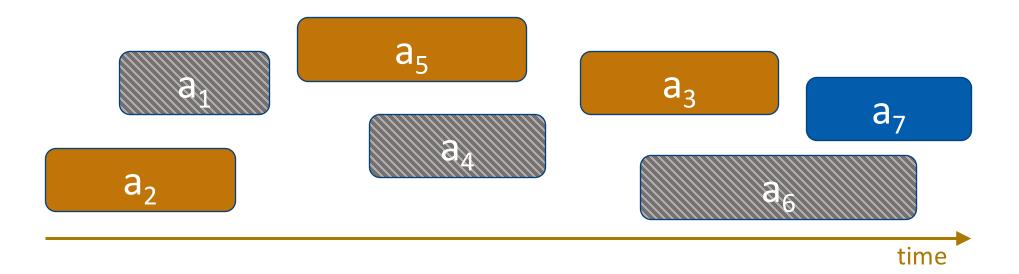
- Pick activity you can add with the smallest finish time.
- Repeat.



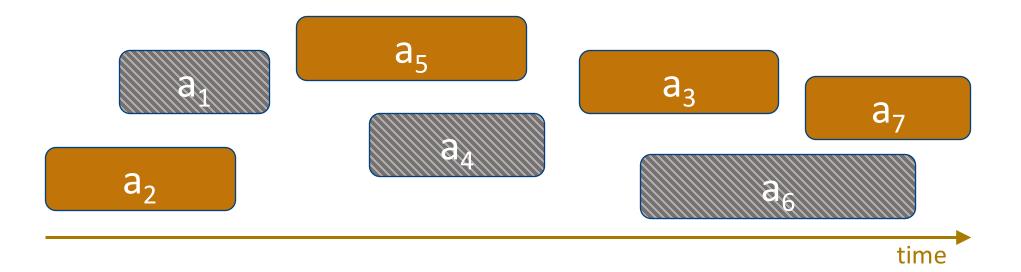
- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



• Running time:

-O(n) if the activities are already sorted by finish time.

-Otherwise, O(n log(n)) if you have to sort them first.

Does this greedy algorithm for activity selection work?
 –Yes

2. Greedy is simple. But why are we getting to it in week 9 (not earlier)?

– Proving that greedy algorithms work is often not so easy...

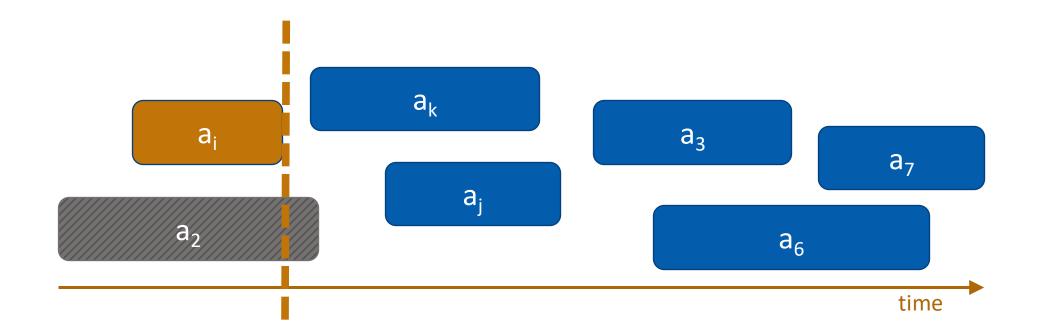
3. In general, when are greedy algorithms a good idea? –When the problem exhibits especially nice optimal substructure.

Back to Activity Selection

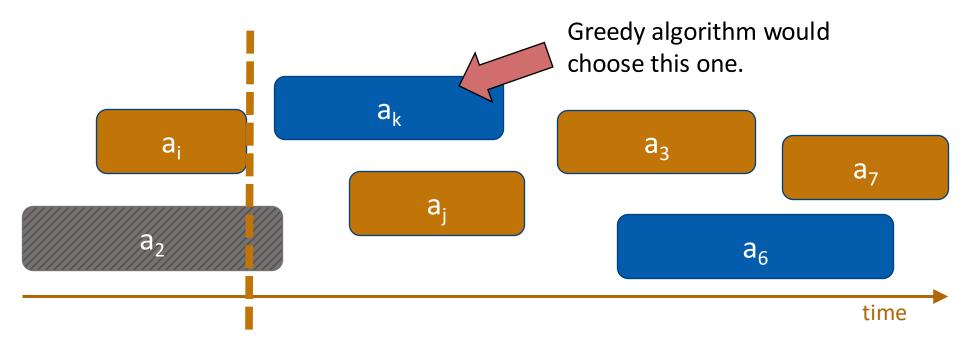
Why does it work?

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

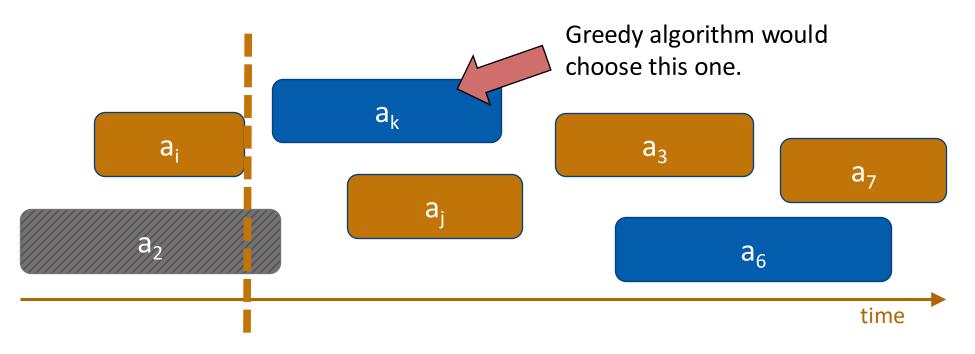
 Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.



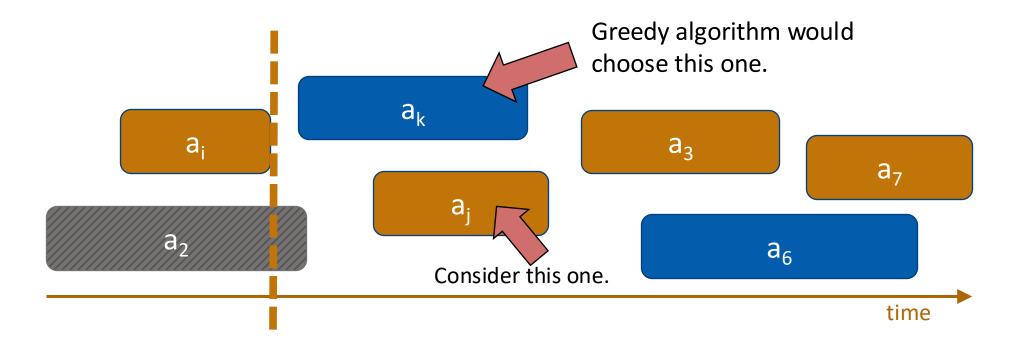
- Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.
- Now consider the next choice we make, say it's a_k.
- If a_k is in T*, we're still on track.



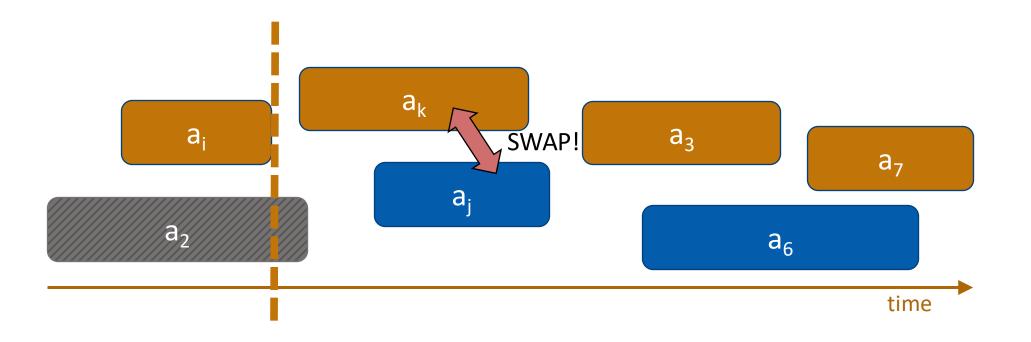
- Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.
- Now consider the next choice we make, say it's a_k.
- If a_k is not in T*...



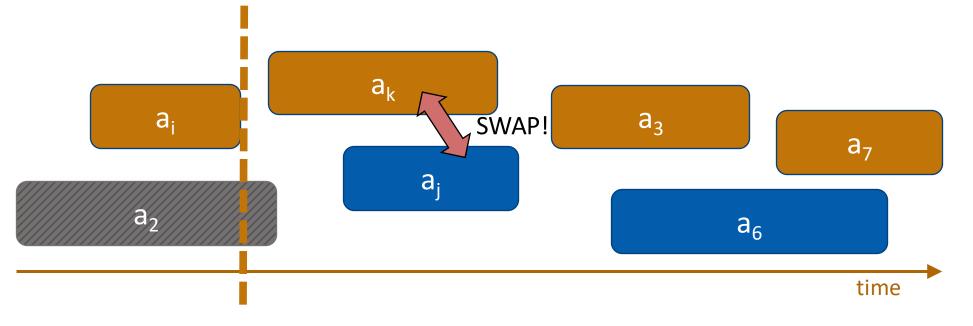
- If a_k is **not** in T*...
- Let a_i be the activity in T* with the smallest end time.
- Now consider schedule T you get by swapping a_i for a_k



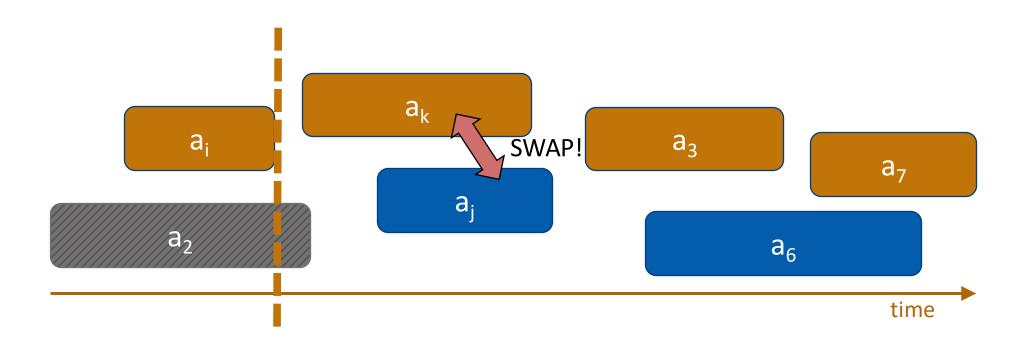
- If a_k is **not** in T*...
- Let a_i be the activity in T* with the smallest end time.
- Now consider schedule T you get by swapping a_i for a_k



- This schedule T is still allowed.
 - Since a_k has the smallest ending time, it ends before a_i .
 - Thus, a_k doesn't conflict with anything chosen after a_j .
- And T is still optimal.
 - It has the same number of activities as T*.



- We've just shown:
 - If there was an optimal solution that extends the choices we made so far...
 - ...then there is an optimal schedule that also contains our next greedy choice $\mathbf{a}_{\mathbf{k}}$



So it's correct!

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

A common strategy for proving the correctness of greedy algorithms:

- Make a series of choices.
- Show that, at each step, our choice won't rule out an optimal solution at the end of the day.
- After we've made all our choices, we haven't ruled out an optimal solution, so we must have found one.

A Common Strategy

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU

- Inductive Hypothesis:
 - After greedy choice t, you haven't ruled out success.
- Base case:
 - Success is possible before you make any choices.
- Inductive step:
 - If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
 - If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.



A Common Strategy

A common strategy for showing we don't rule out the optimal solution:

- Suppose that you're on track to make an optimal solution T*.
 - E.g., after you've picked activity i, you're still on track.
- Suppose that T* *disagrees* with your next greedy choice.
 - E.g., it *doesn't* involve activity k.
- Manipulate T* in order to make a solution T that's not worse but that *agrees* with your greedy choice.
 - E.g., swap whatever activity T* did pick next with activity k.

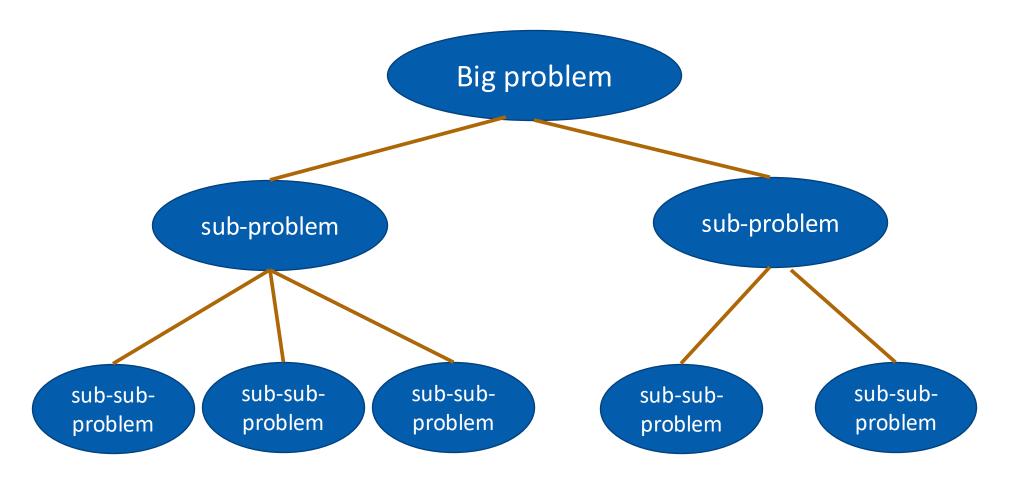
Does this greedy algorithm for activity selection work?
 Yes

2. Greedy is simple. But why are we getting to it in week 9?

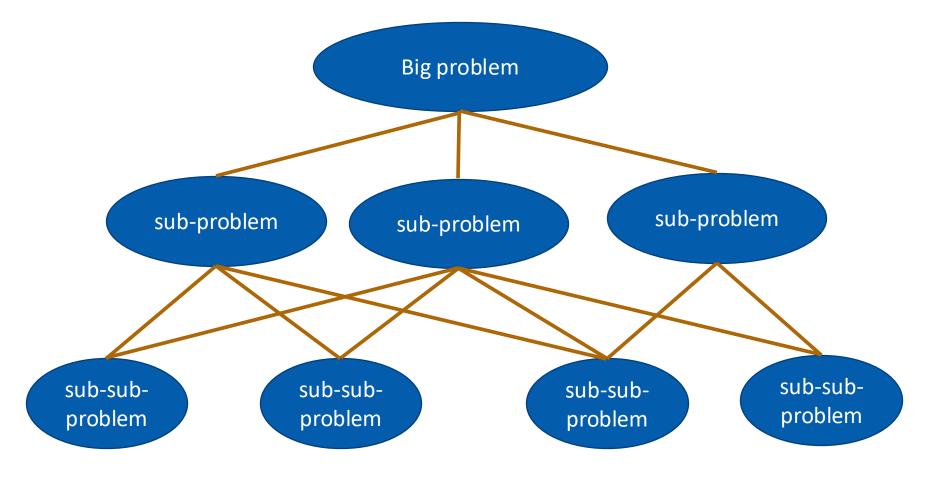
- Proving that greedy algorithms work is often not so easy...

3. In general, when are greedy algorithms a good idea? –When the problem exhibits especially nice optimal substructure.

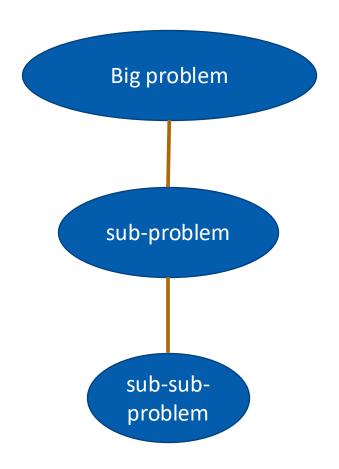
• Divide-and-conquer:



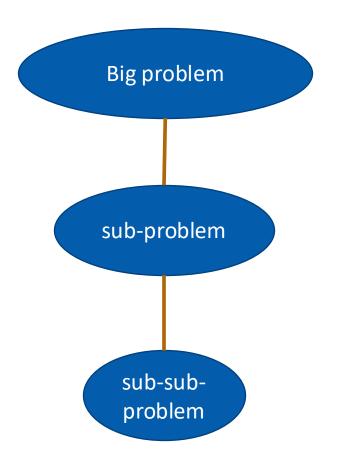
• Dynamic Programming:



• Greedy algorithms:



• Greedy algorithms:



- Not only is there **optimal sub-structure**:
 - optimal solutions to a problem are made up from optimal solutions of sub-problems
- but each problem depends on only one sub-problem.

Does this greedy algorithm for activity selection work?
 Yes

2. Greedy is simple. But why are we getting to it in week 9?

– Proving that greedy algorithms work is often not so easy...

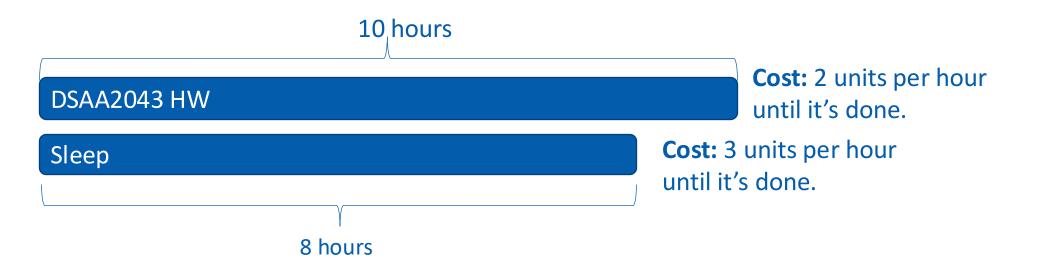
3. In general, when are greedy algorithms a good idea? –When the problem exhibits especially nice optimal substructure.

Another Example: Scheduling

DSAA2043 HW		
Personal hygiene		
Math HW		
Administrative stuff for	student club	
Econ HW		
Do laundry		
Sports		
Practice musical instru	ment	
Read lecture notes		
Have a social life		
Sleep		

Scheduling

- n tasks
- Task i takes t_i hours
- For every hour that passes until task i is done, pay c_i



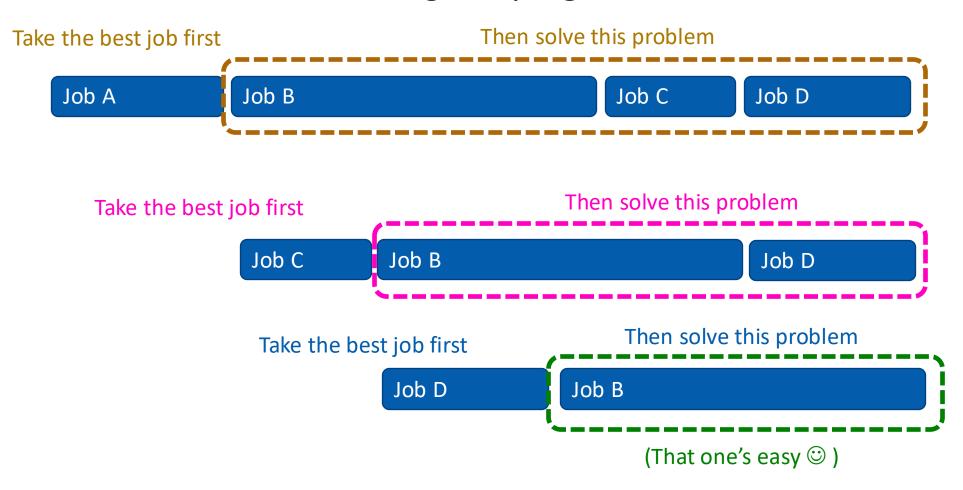
- DSAA2043 HW, then Sleep: costs **10** · **2** + (**10** + **8**) · **3** = **74** units
- Sleep, then DSAA2043 HW: costs 8 · 3 + (10 + 8) · 2 = 60 units

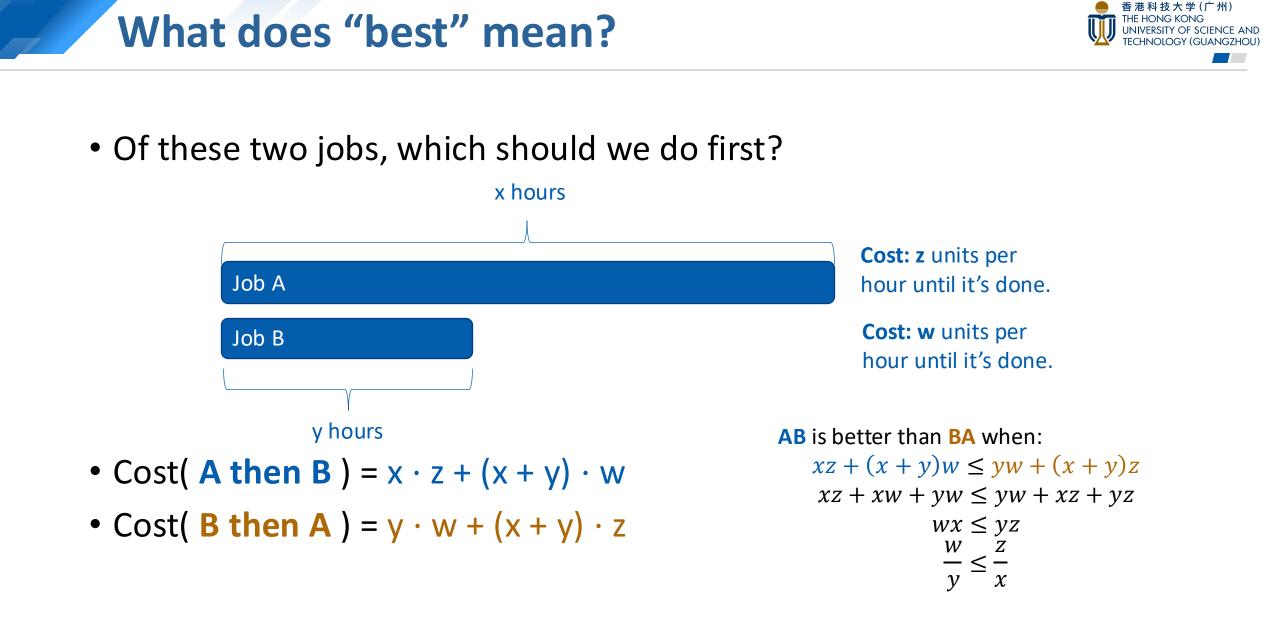
• This problem breaks up nicely into sub-problems:

Suppose this is the optimal schedule:

than (A,B,C,D)!

• Seems amenable to a greedy algorithm:

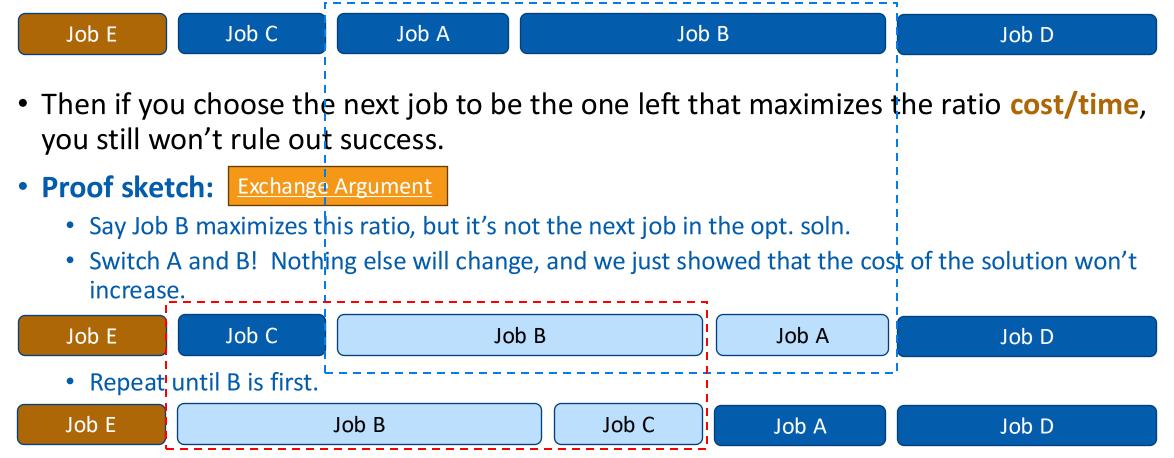




Idea for Greedy

• Choose the job with the biggest $\frac{\text{cost of delay}}{\text{time it takes}}$ ratio.

• Suppose you have already chosen some jobs, and haven't yet ruled out success:



• Now this is an optimal schedule where B is first.

Correctness

- Inductive Hypothesis:
 - After greedy choice t, you haven't ruled out success.
- Base case:
 - Success is possible before you make any choices.
- Inductive step:
 - If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
 - If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

Greedy Scheduling Solution

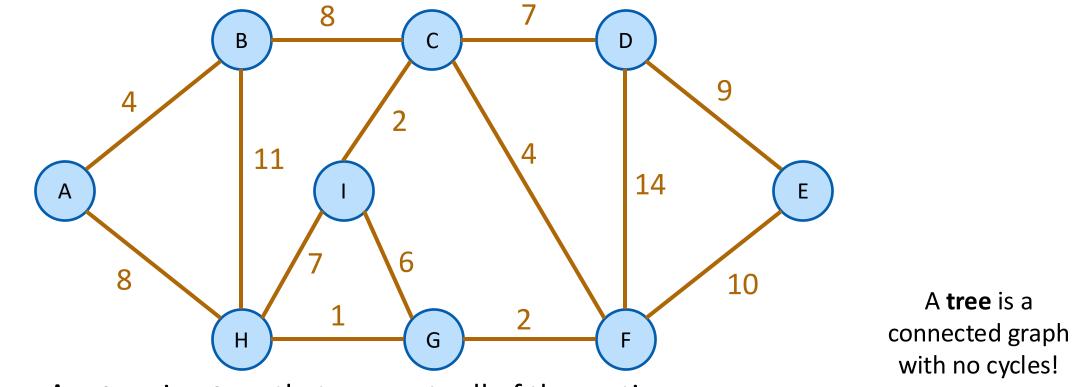
• scheduleJobs(JOBS):

- Sort JOBS in decreasing order by the ratio: • $r_i = \frac{c_i}{t_i} = \frac{\text{cost of delaying job i}}{\text{time job i takes to complete}}$ - Return JOBS

Running time: O(n log(n))

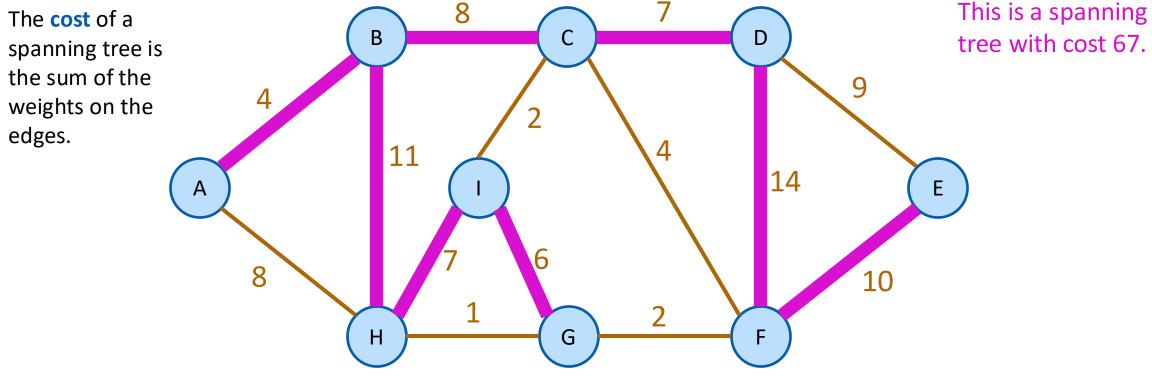
- Greedy algorithms for Minimum Spanning Tree.
- Agenda:
 - 1. What is a Minimum Spanning Tree?
 - 2. Short break to introduce some graph theory tools
 - 3. Prim's algorithm
 - 4. Kruskal's algorithm

• Say we have an undirected weighted graph



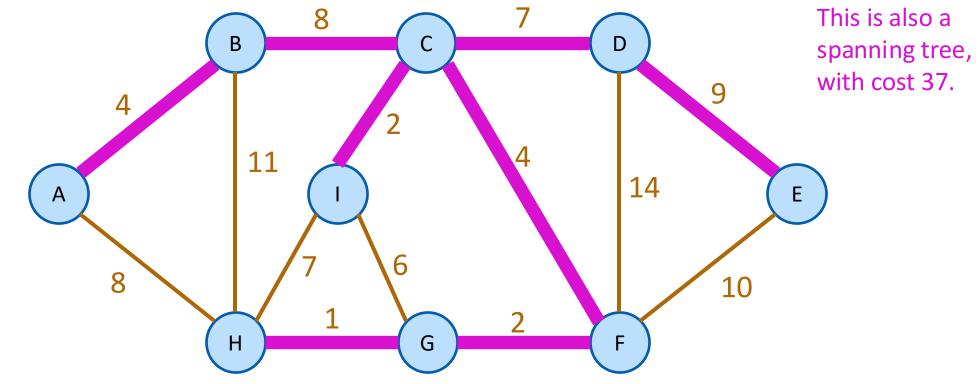
A spanning tree is a tree that connects all of the vertices.

• Say we have an undirected weighted graph



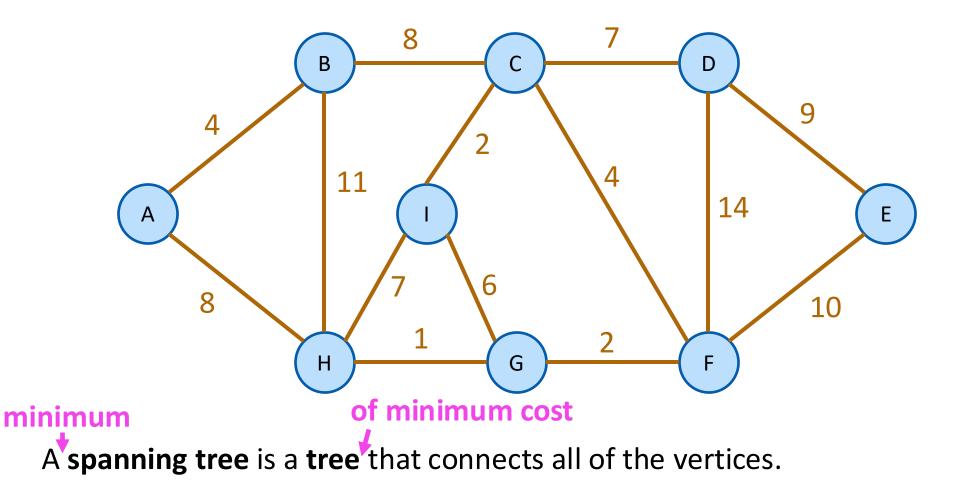
A spanning tree is a tree that connects all of the vertices.

• Say we have an undirected weighted graph



A spanning tree is a tree that connects all of the vertices.

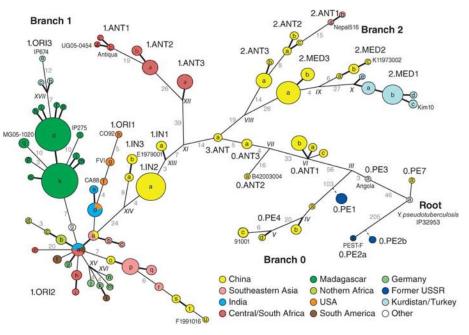
• Say we have an undirected weighted graph



General def: tree that connects <u>ONLY</u> to a <u>GIVEN</u> subset of vertices • Network design

Why MSTs?

- Connecting cities with roads/electricity/telephone/...
- Cluster analysis
 - E.g., genetic distance
- Image processing
 - E.g., image segmentation
- Useful primitive
 - For other graph algs



How to find an MST

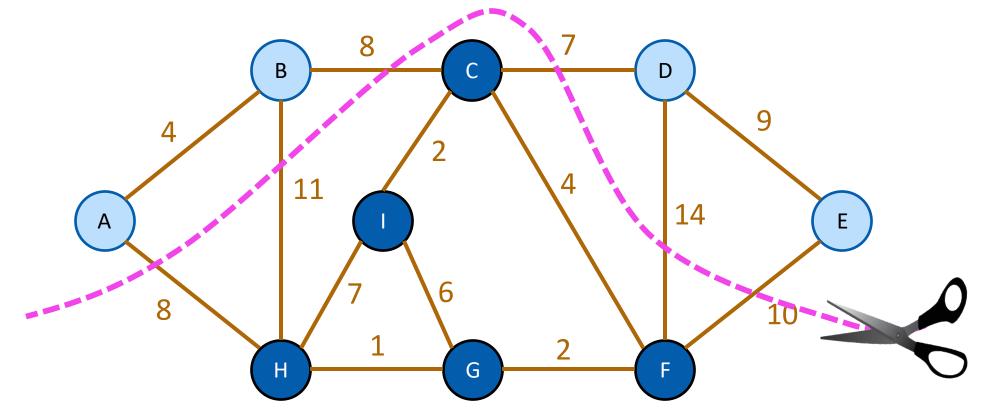
- Today we'll see two greedy algorithms.
- In order to prove that these greedy algorithms work, we'll show something like:

Suppose that our choices so far are consistent with an MST.

Then the next greedy choice that we make is still consistent with an MST.

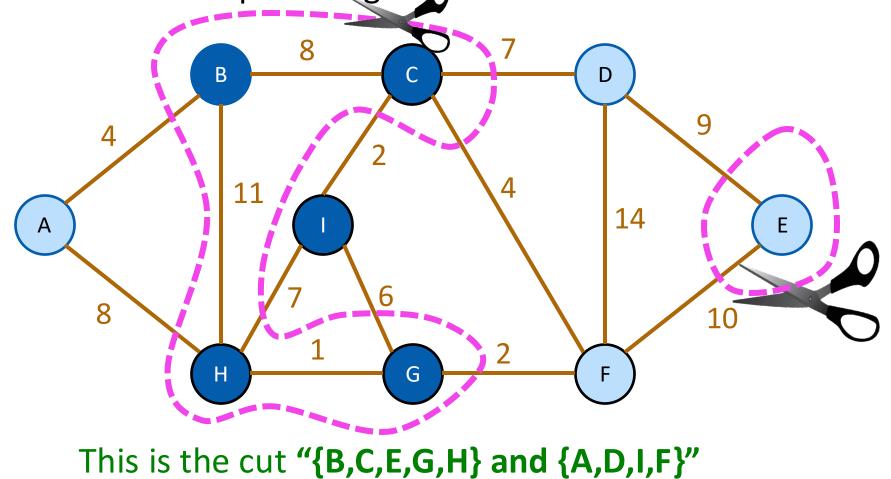
• This is not the only way to prove that these algorithms work!

• A cut is a partition of the vertices into two parts:



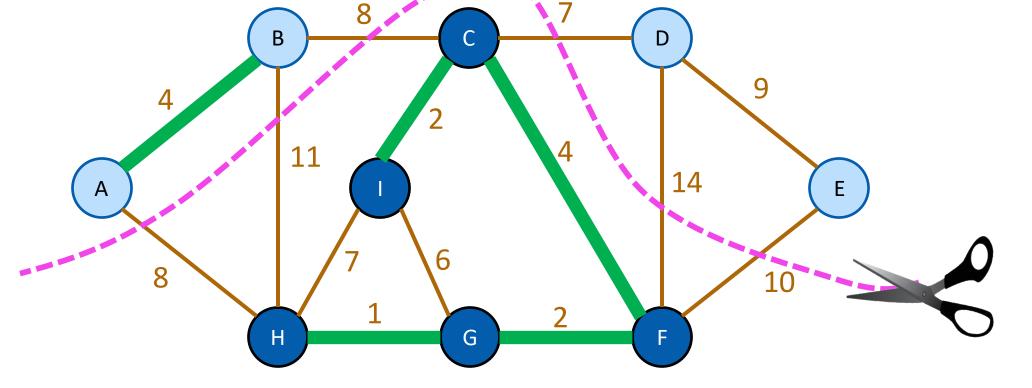
This is the cut "{A,B,D,E} and {C,I,H,G,F}"

• One or both of the two parts might be disconnected.



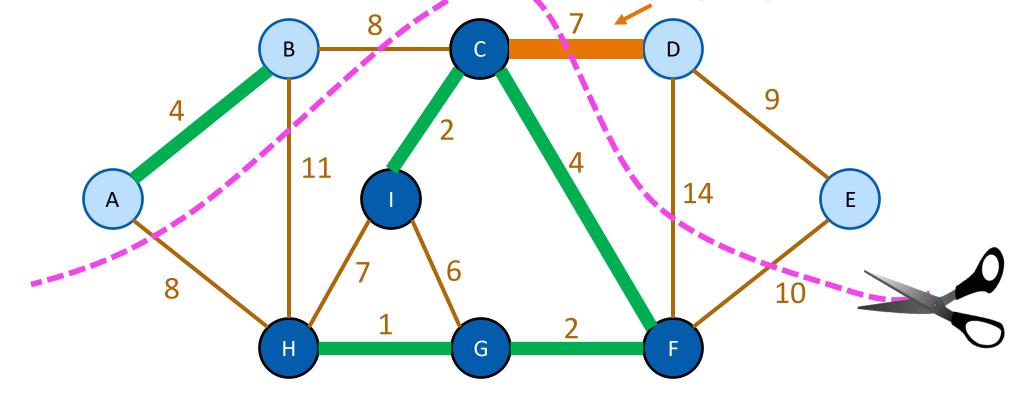
Let S be a set of edges in G

- We say a cut **respects** S if no edges in S cross the cut.
- An edge crossing a cut is called **light** if it has the smallest weight of any edge crossing the cut.



Let S be a set of edges in G

- We say a cut **respects** S if no edges in S cross the cut.
- An edge crossing a cut is called **light** if it has the smallest weight of any edge crossing the cut. This edge is light

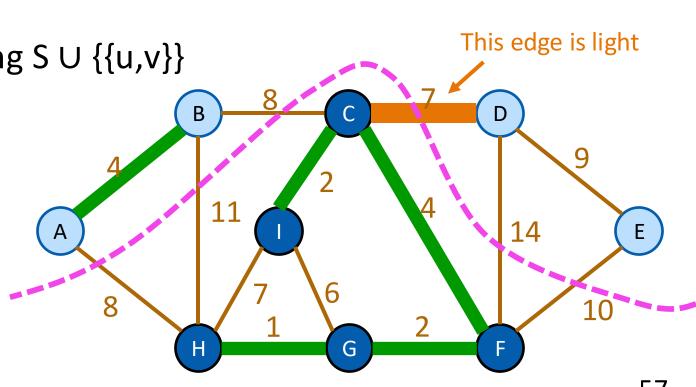


Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let {u,v} be a light edge.
- Then there is an MST containing S U $\{\{u,v\}\}$

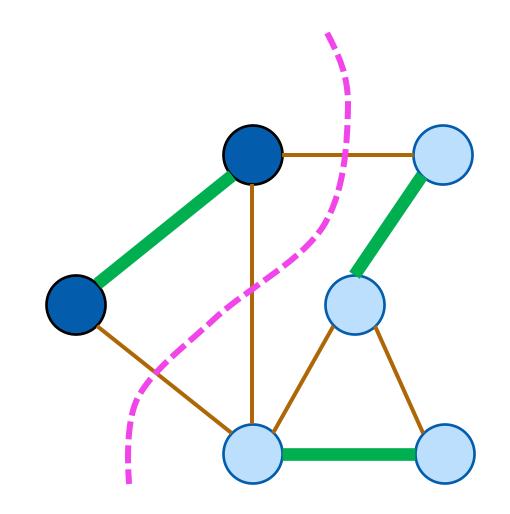
Aka:

If we haven't ruled out the possibility of success so far, then adding a light edge still won't rule it out.

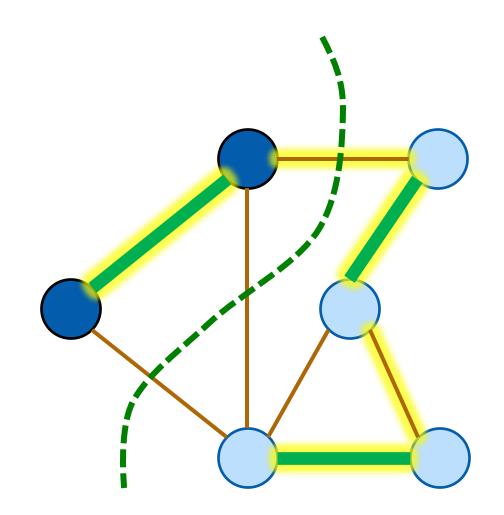


香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

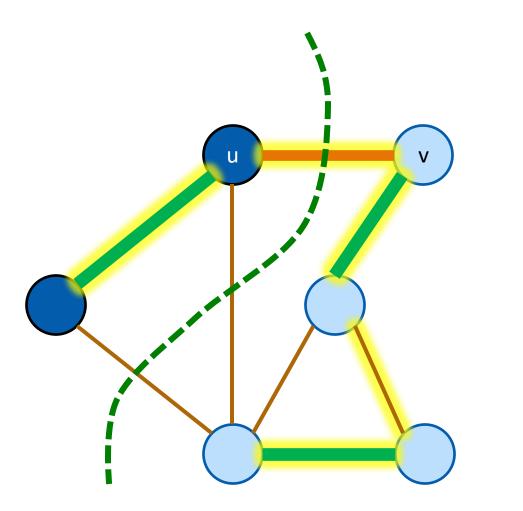
- Assume that we have:
 - a cut that respects S



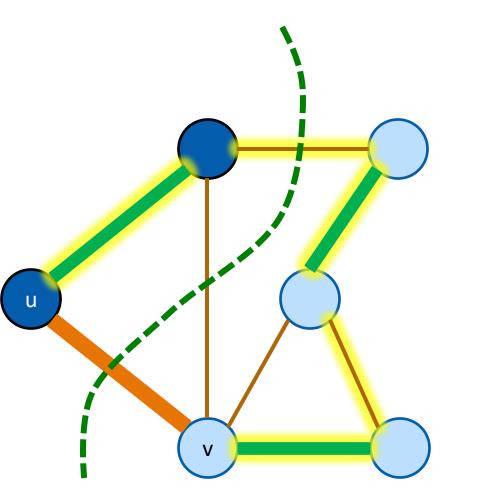
- Assume that we have:
 - a cut that respects S
 - S is part of some MST T.



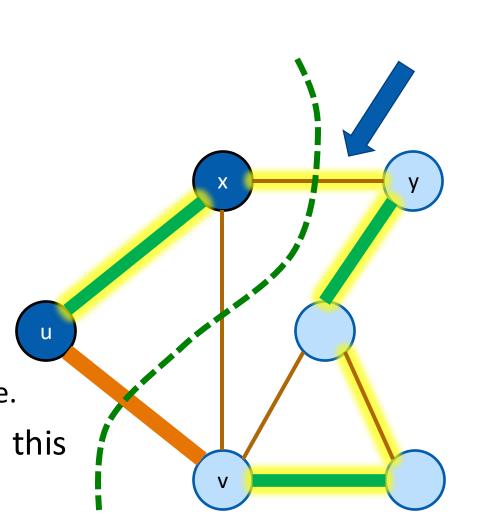
- Assume that we have:
 - a cut that respects S
 - S is part of some MST T.
- Say that **{u,v}** is light.
 - lowest cost crossing the cut
- If {u,v} is in T, we are done.
 T is an MST containing both {u,v} and S.



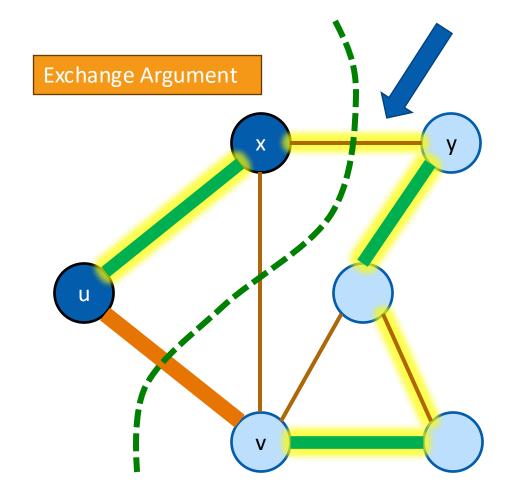
- Assume that we have:
 - a cut that respects S
 - S is part of some MST T.
- Say that **{u,v}** is light.
 - lowest cost crossing the cut
- Say **{u,v}** is not in **T**.
 - Note that adding {u,v} to T will make a cycle.



- Assume that we have:
 - a cut that respects S
 - S is part of some MST T.
- Say that **{u,v}** is light.
 - lowest cost crossing the cut
- Say **{u,v}** is not in **T**.
 - Note that adding {u,v} to T will make a cycle.
- There is at least one other edge, **{x,y}**, in this cycle crossing the cut.



- Consider swapping {u,v} for {x,y} in **T**.
 - Call the resulting tree **T**

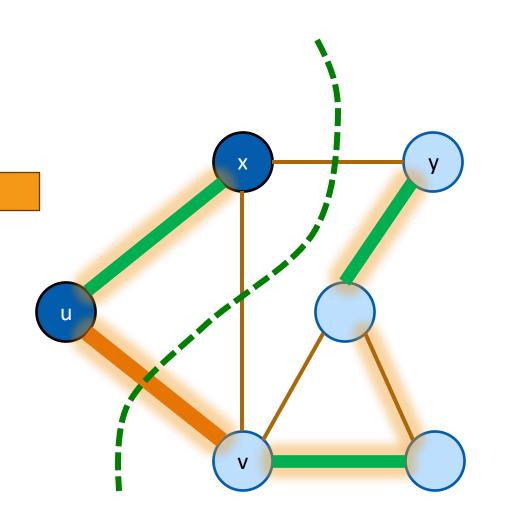


Proof of Lemma ctd.

• Consider swapping {u,v} for {x,y} in **T**.

Verification (easy)

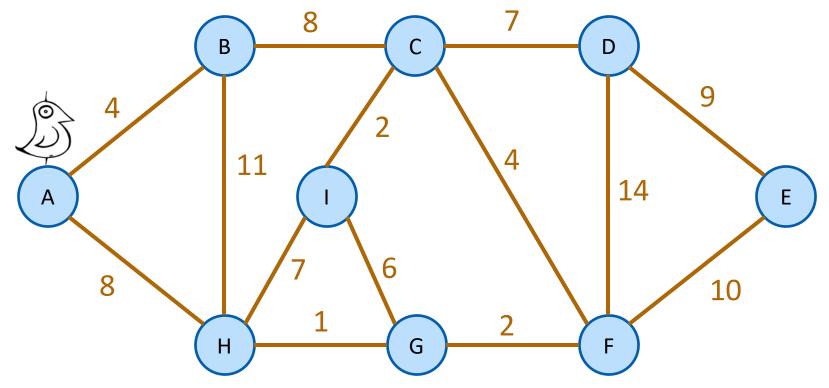
- Call the resulting tree T'.
- Claim: T' is still an MST.
 - It is still a spanning tree (why?)
 - It has cost at most that of T
 - T had minimal cost.
 - So **T'** does too.
- So **T** is an MST containing S and {u,v}.

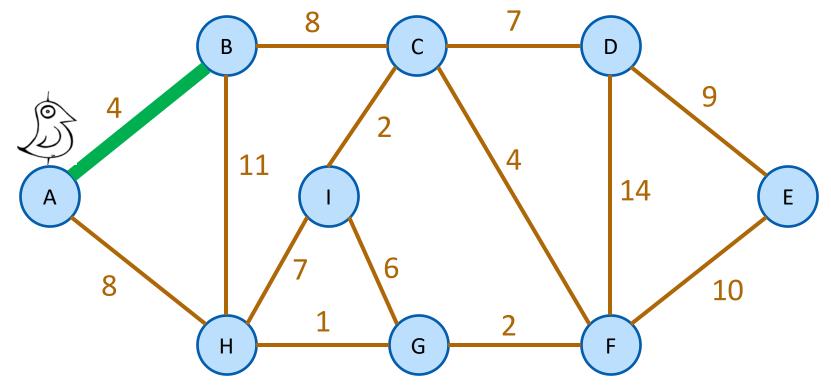


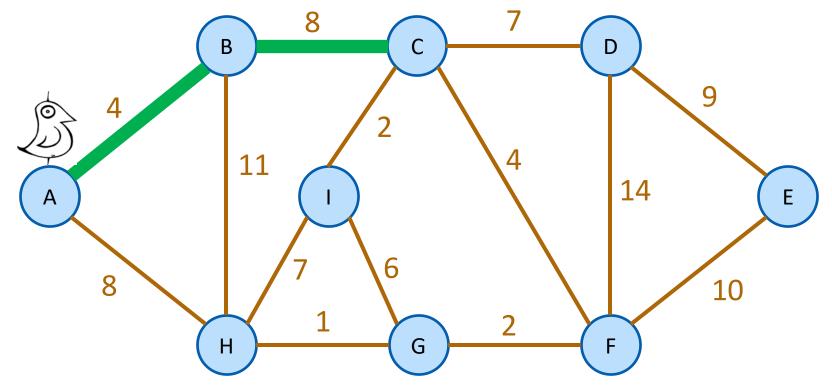
How to find an MST

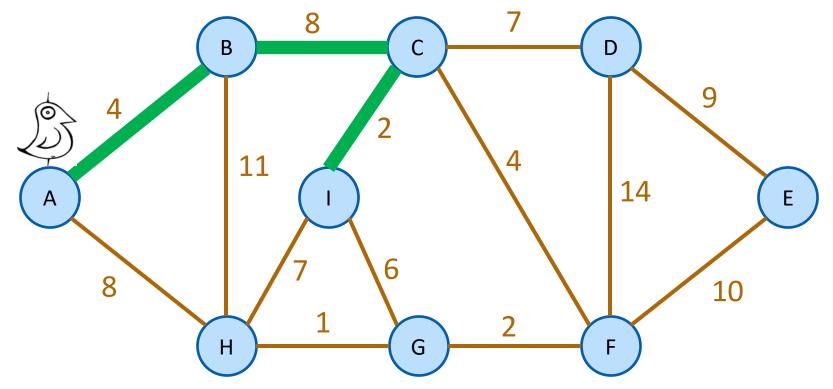
香港科技大学(厂州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU

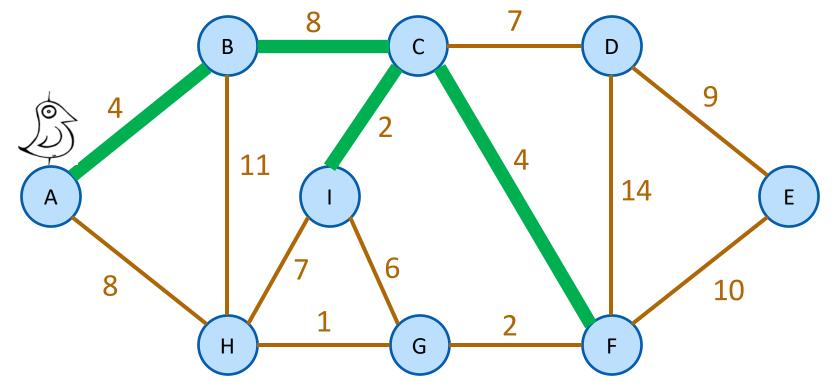
- How do we find one?
- Today we'll see two greedy algorithms.
- The strategy:
 - Make a series of choices, adding edges to the tree.
 - Show that each edge we add is **safe to add**:
 - we do not rule out the possibility of success
 - we will choose light edges crossing cuts and use the Lemma.
 - Keep going until we have an MST.

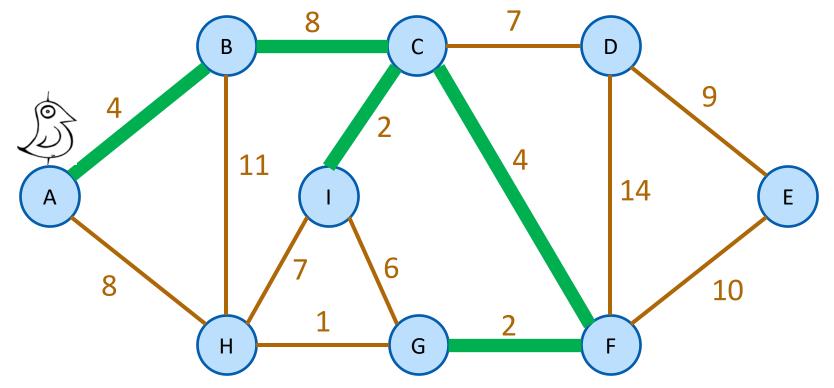


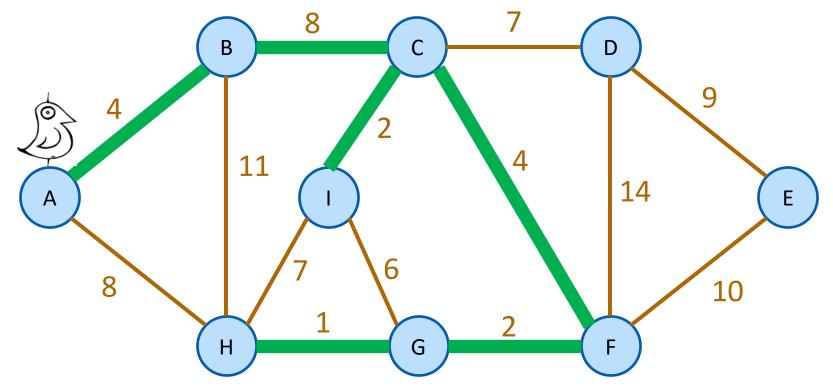






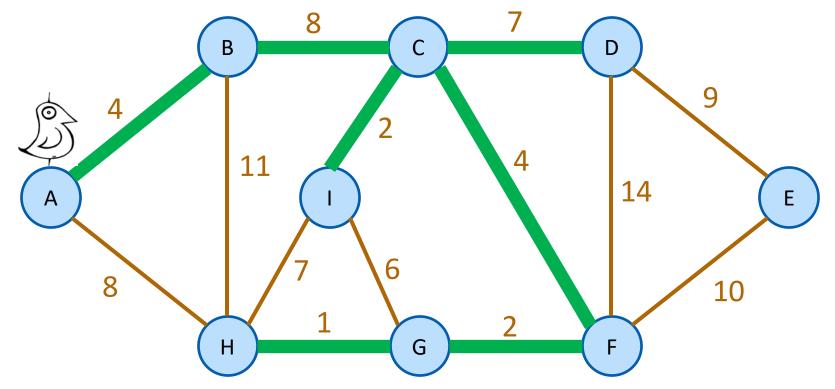






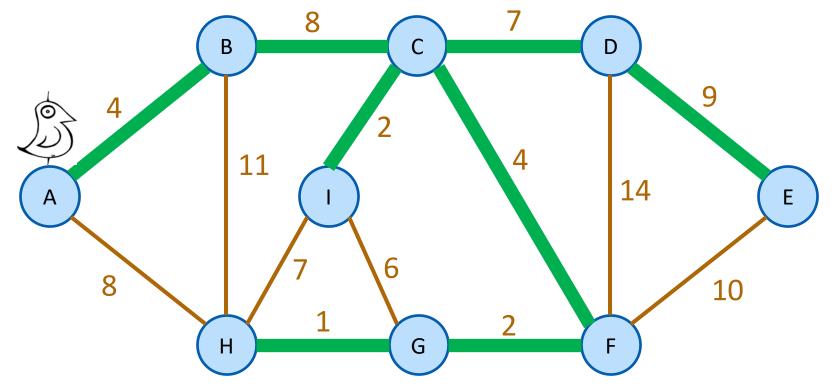
Idea:

Start growing a tree, greedily add the shortest edge we can to grow the tree.



Idea:

Start growing a tree, greedily add the shortest edge we can to grow the tree.



We've discovered Prim's algorithm!

- slowPrim(G = (V,E), starting vertex s):
 - MST = {}
 - verticesVisited = { s }
 - while |verticesVisited| < |V|:
 - find the lightest edge {x,v} in E so that:
 - x is in verticesVisited
 - v is not in verticesVisited
 - add {x,v} to MST
 - add v to verticesVisited
 - return MST

Naively, the running time is O(nm):

- For each of ≤n-1 iterations of the while loop:
 - Go through all the edges.

Two questions

- 1. Does it work?
 - -That is, does it actually return a MST?

2. How do we actually implement this?-the pseudocode above says "slowPrim"...

Does it work?

- We need to show that our greedy choices **don't rule out success**.
- That is, at every step:
 - If there exists an MST that contains all of the edges S we have added so far...
 - ...then when we make our next choice {u,v}, there is still an MST containing S and {u,v}.
- Now it is time to use our lemma!

Lemma

• Let S be a set of edges, and consider a cut that respects S.

Α

8

В

Η

11

6

G

- Suppose there is an MST containing S.
- Let {u,v} be a light edge.
- Then there is an MST containing S \cup {{u,v}}

Ε

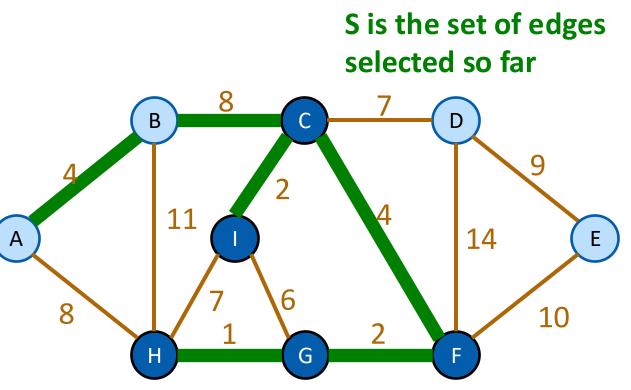
This edge is light

14

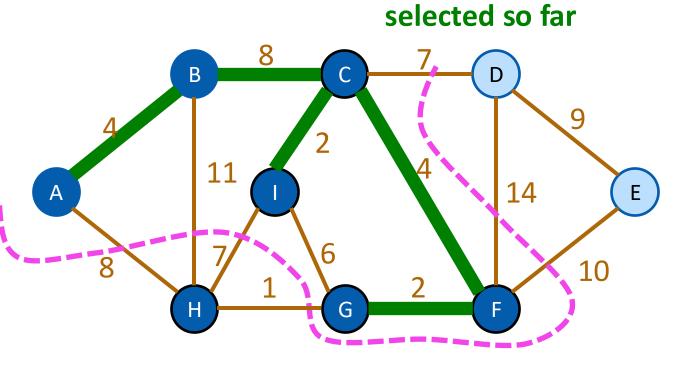
香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

- Assume that our choices **S** so far don't rule out success
 - There is an MST consistent with those choices How can we use our lemma to show that our

next choice also does not rule out success?



- Assume that our choices **S** so far don't rule out success
 - There is an MST consistent with those choices
- Consider the cut {visited, unvisited}
 - This cut respects S.



S is the set of edges

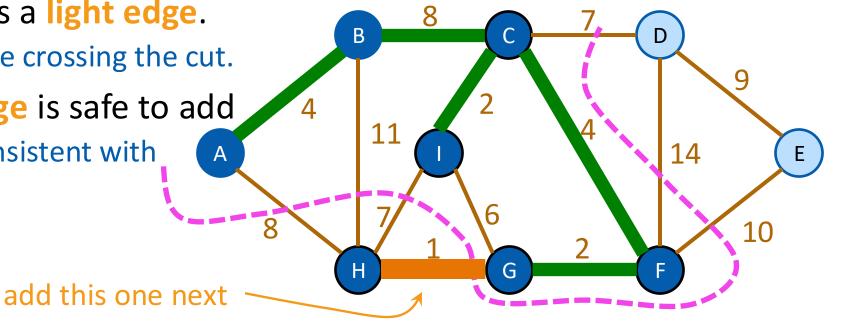
• Assume that our choices **S** so far don't rule out success

- There is an MST consistent with those choices
- Consider the cut {visited, unvisited}

- This cut respects S.

- The edge we add next is a light edge.
 - Least weight of any edge crossing the cut.
- By the Lemma, that edge is safe to add
 - There is still an MST consistent with the new set of edges.

S is the set of edges selected so far



Formally,

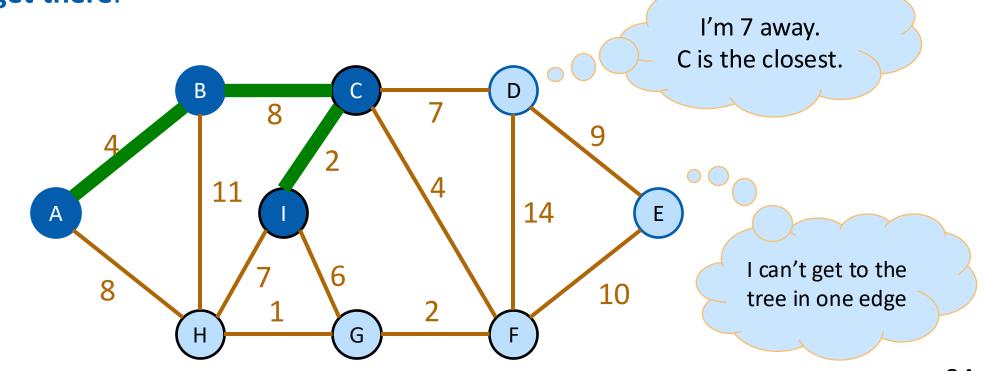
- Inductive hypothesis:
 - After adding the t'th edge, there exists an MST with the edges added so far.
- Base case:
 - In the beginning, with no edges added, there exists an MST containing all the (zero) edges added so far. YEP.
- Inductive step:
 - If the inductive hypothesis holds for t (aka, the choices so far are safe), then it holds for t+1 (aka, the next edge we add is safe).
 - That's what we just showed.
- Conclusion:
 - After adding the n-1'st edge, there exists an MST with the edges added so far.
 - At this point, we have a spanning tree, so it better be a minimum spanning tree.

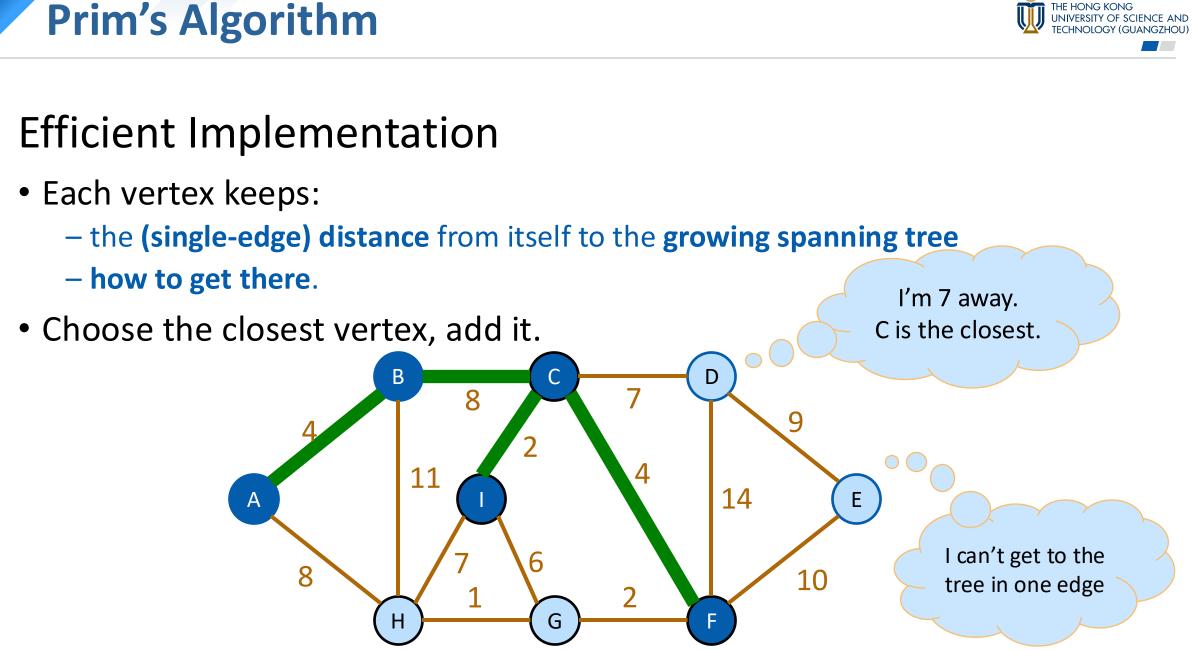
Two questions

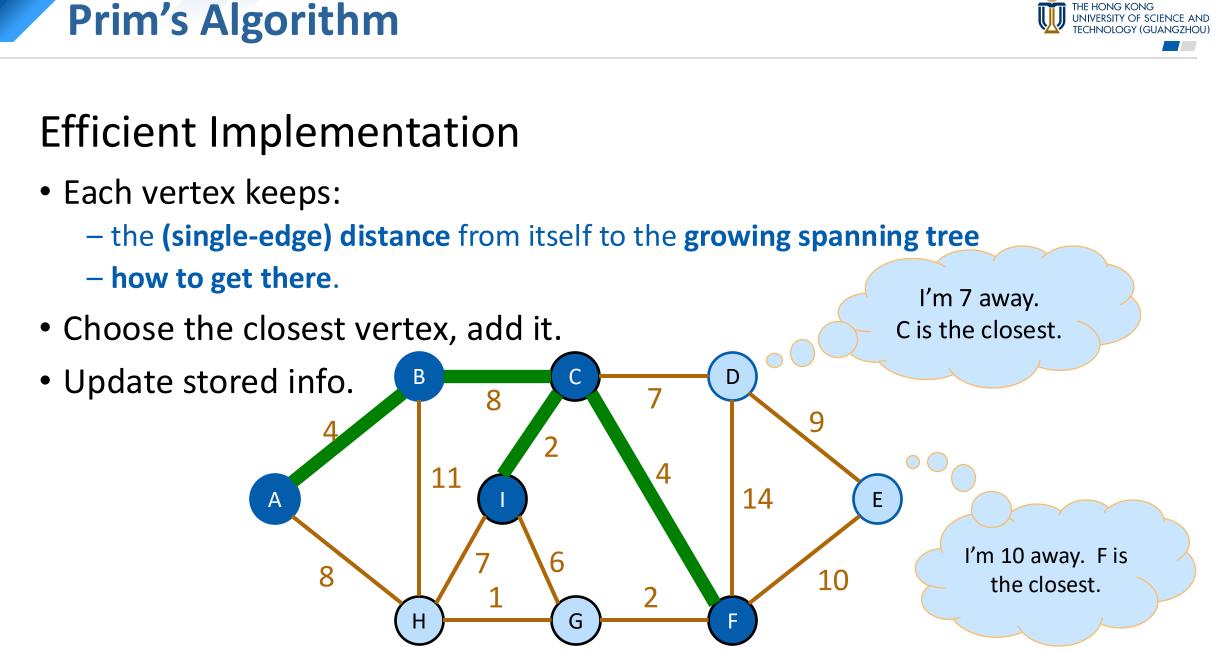
- 1. Does it work?
 - That is, does it actually return a MST?YES!
- 2. How do we actually implement this?
 - -the pseudocode above says "slowPrim"...

Efficient Implementation

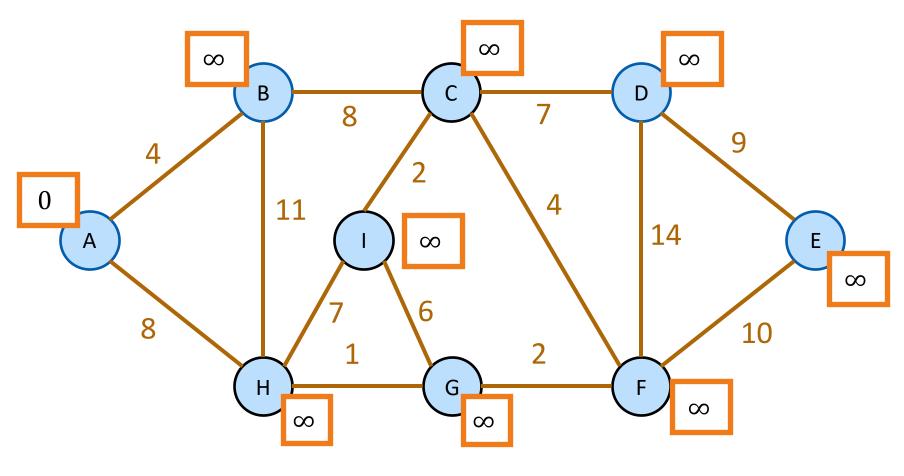
- Each vertex keeps:
 - the (single-edge) distance from itself to the growing spanning tree
 - how to get there.







Every vertex has a key and a parent



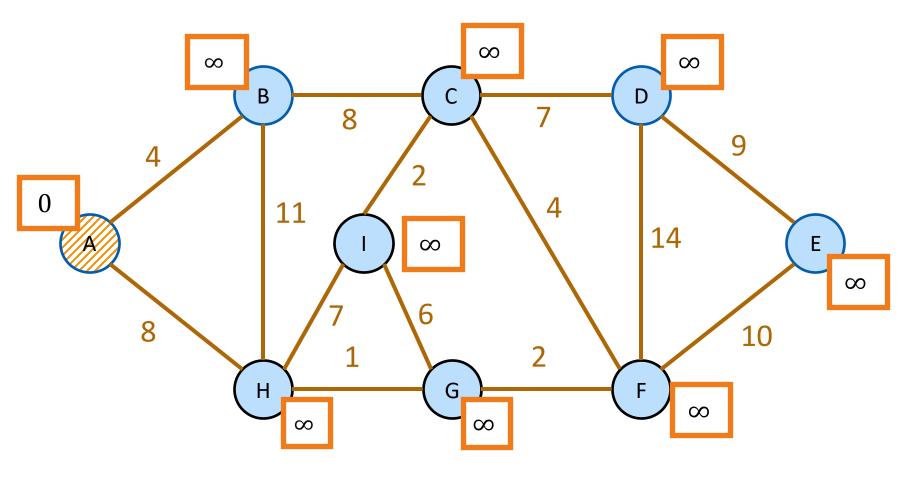
x Can't reach x yet x is "active" Can reach x

k[x] is the distance of x from the growing tree

b p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Every vertex has a key and a parent



香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU

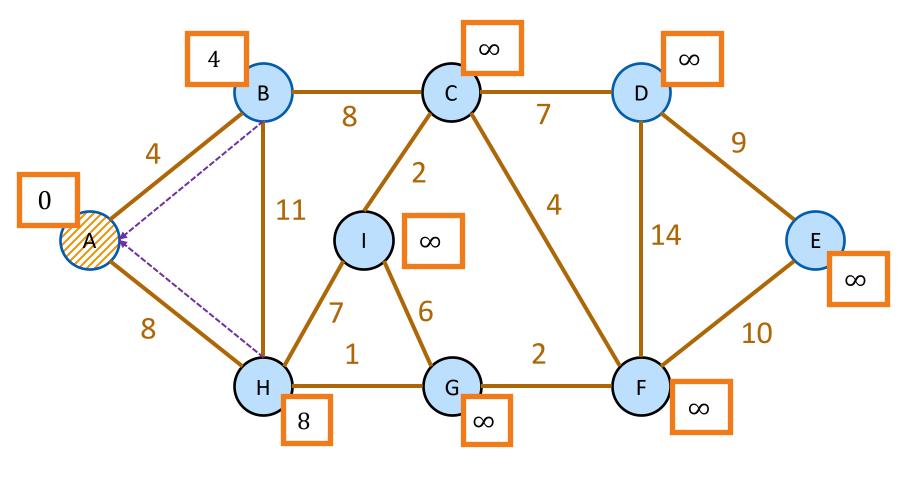
Can't reach x yet x is "active" Can reach x

k[x] is the distance of x from the growing tree

b p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Every vertex has a key and a parent



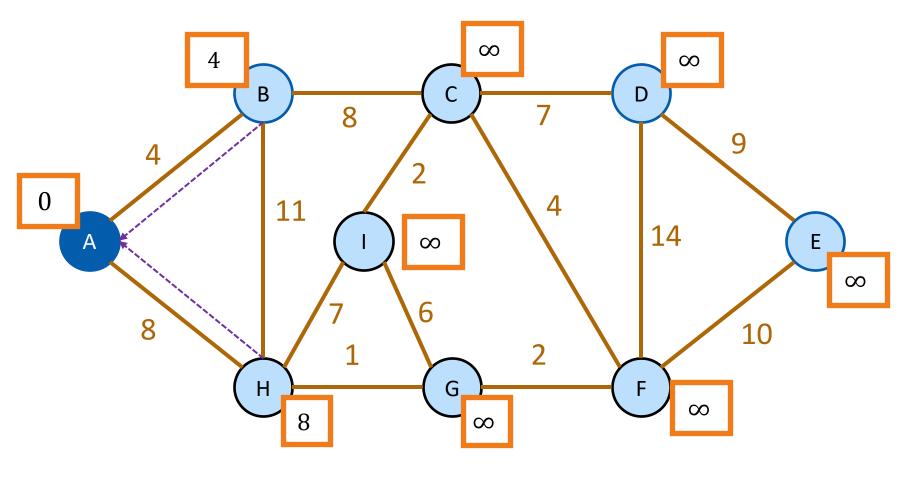
x Can't reach x yet
x is "active"
x Can reach x

k[x] is the distance of x from the growing tree

p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Every vertex has a key and a parent



香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU

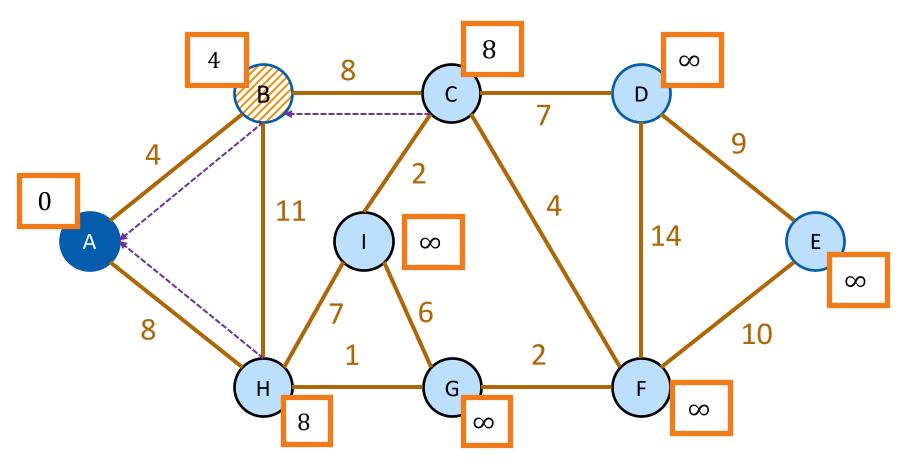
Can't reach x yet
x is "active"
Can reach x

k[x] is the distance of x from the growing tree

b p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Every vertex has a key and a parent



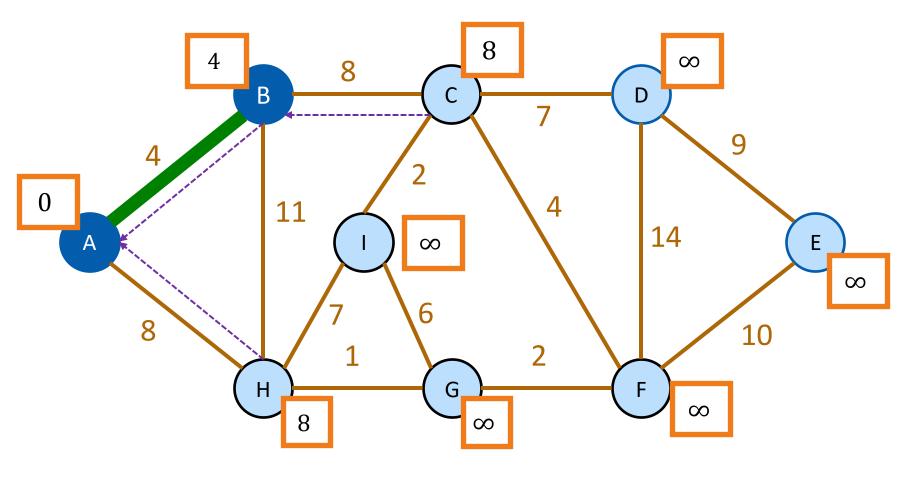
x Can't reach x yet
x is "active"
x Can reach x

k[x] is the distance of x from the growing tree

p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Every vertex has a key and a parent



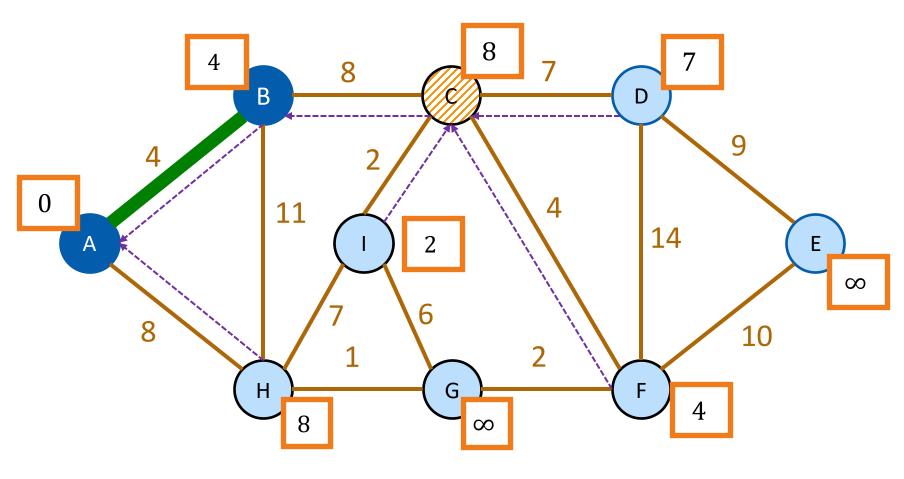
Can't reach x yet x is "active" Can reach x

k[x] is the distance of x from the growing tree

b p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Every vertex has a key and a parent



x Can't reach x yet
 x is "active"
 x Can reach x

k[x] is the distance of x from the growing tree

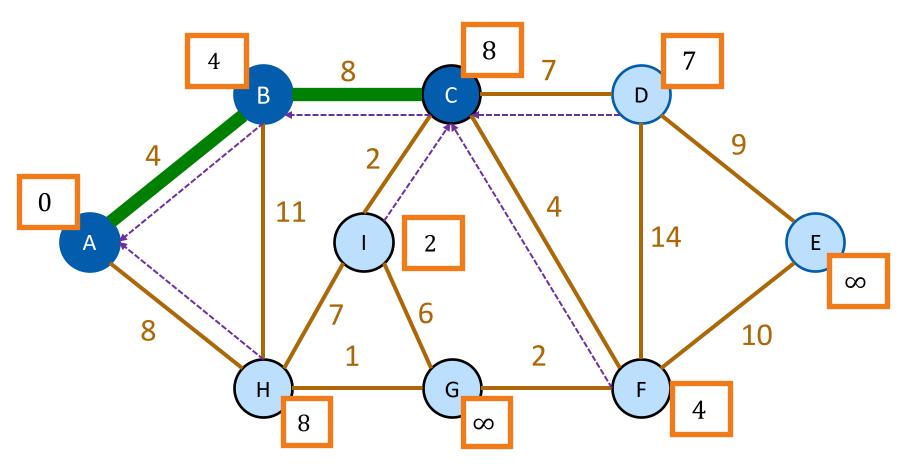
b p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

THE HONG KONG UNIVERSITY OF SC TECHNOLOGY (GU

Efficient Implementation

Every vertex has a key and a parent



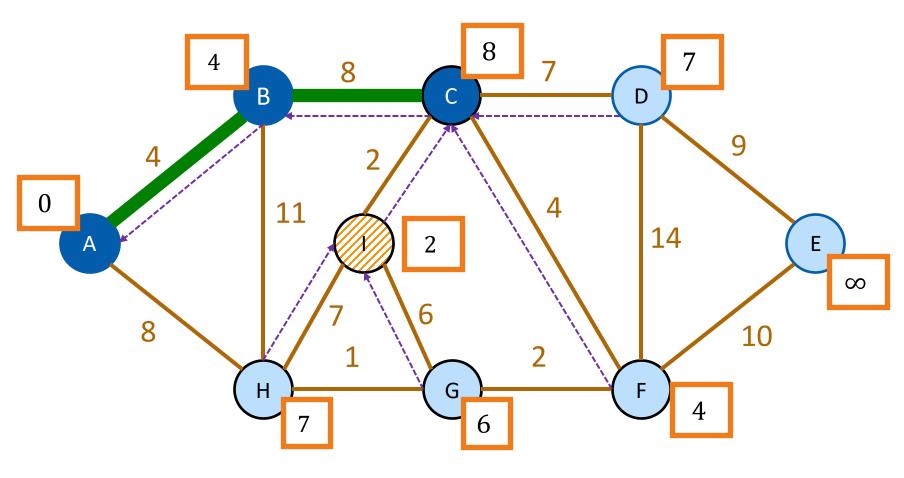
x Can't reach x yet
x is "active"
x Can reach x

k[x] is the distance of x from the growing tree

p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Every vertex has a key and a parent



香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

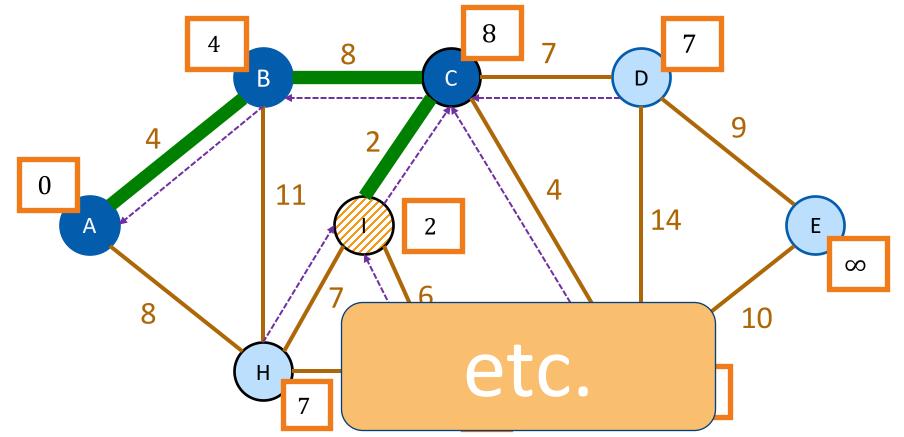
x Can't reach x yet x is "active" Can reach x

k[x] is the distance of x from the growing tree

b p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Every vertex has a key and a parent



香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

x Can't reach x yet x is "active" Can reach x

k[x] is the distance of x from the growing tree

b p[b] = a, meaning that a was the vertex that k[b] comes from.

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

- Very similar to Dijkstra's algorithm!
- Differences:
 - 1. Keep track of p[v] in order to return a tree at the end
 - But Dijkstra's can do that too, that's not a big difference.
 - 2. Instead of d[v] which we update by
 - d[v] = min(d[v], d[u] + w(u,v))

we keep k[v] which we update by

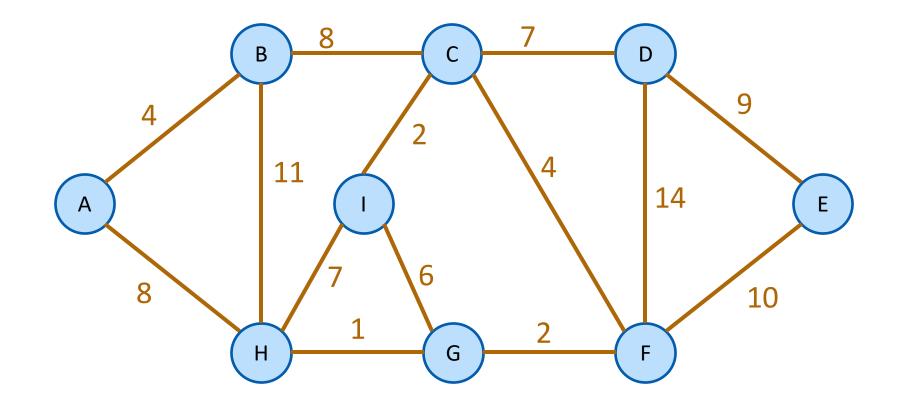
• k[v] = min(k[v], w(u,v))

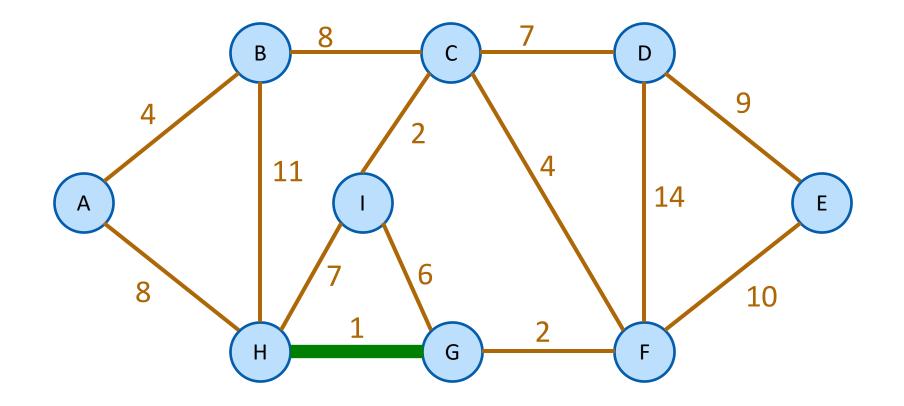
Thing 2 is the main difference.

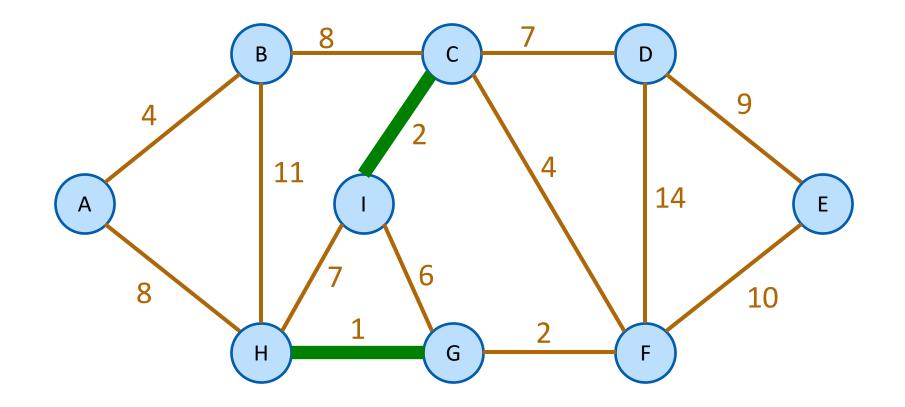
Two questions

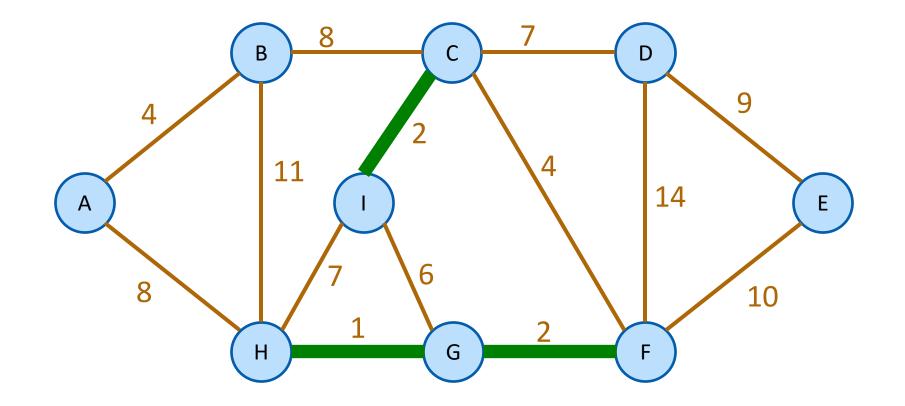
- 1. Does it work?
 - -That is, does it actually return a MST?
 - YES!
- 2. How do we actually implement this?
 - -the pseudocode above says "slowPrim"...
 - Implement it basically the same way we'd implement Dijkstra!

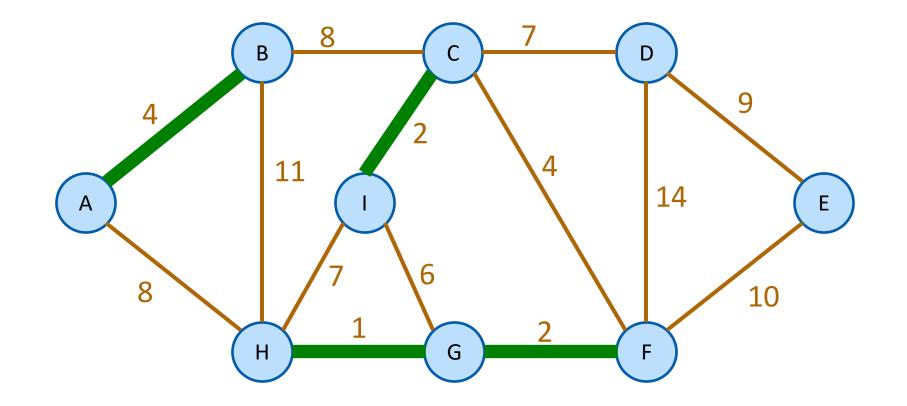
That's not the only greedy algorithm for MST!

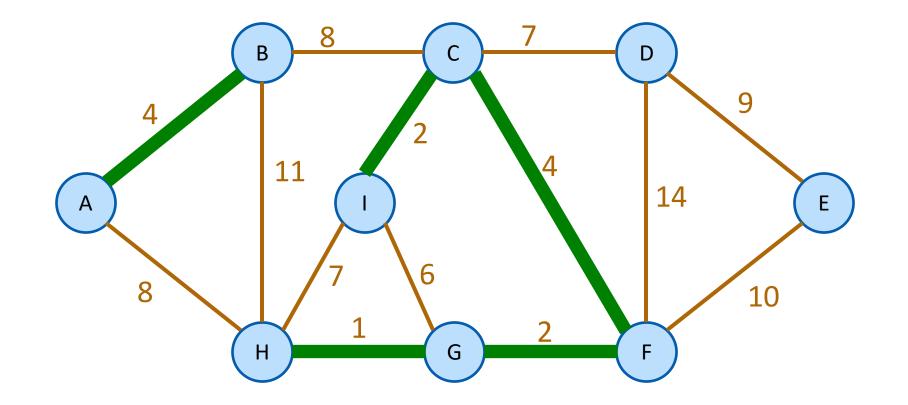


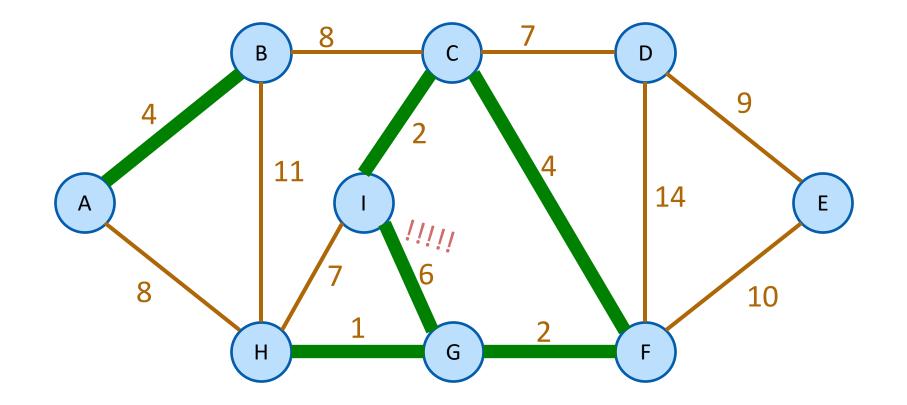


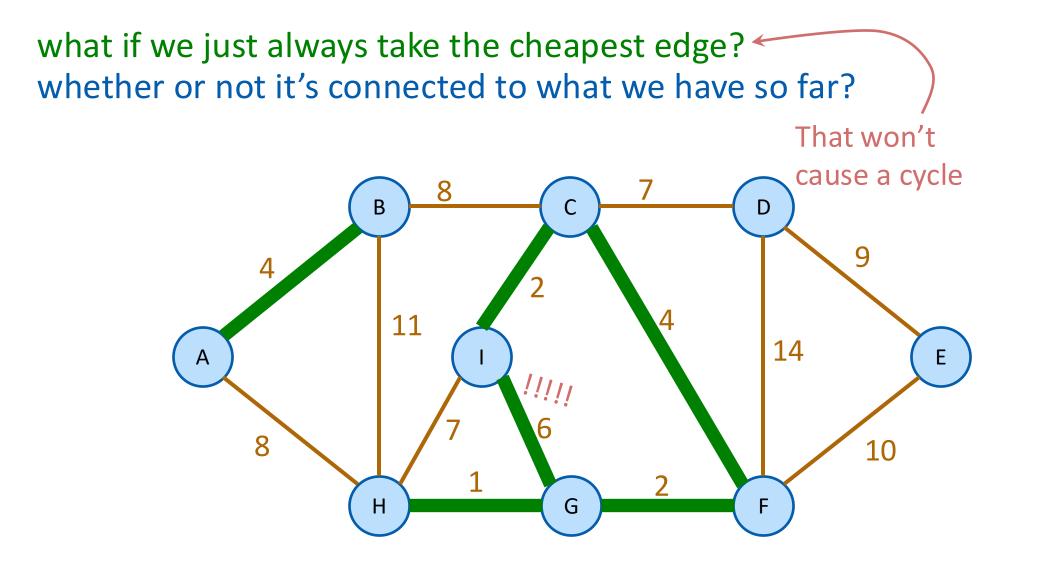


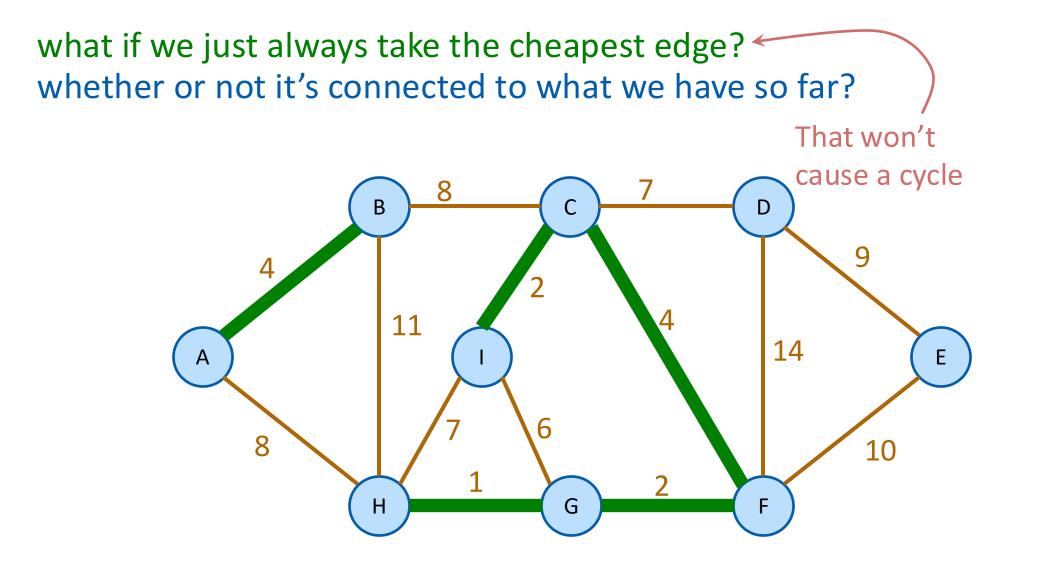


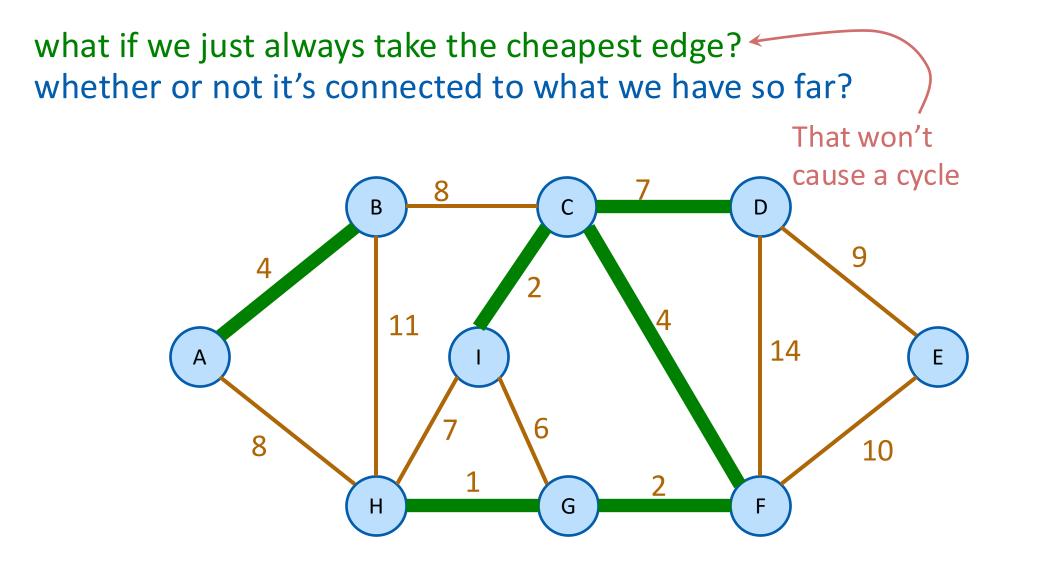


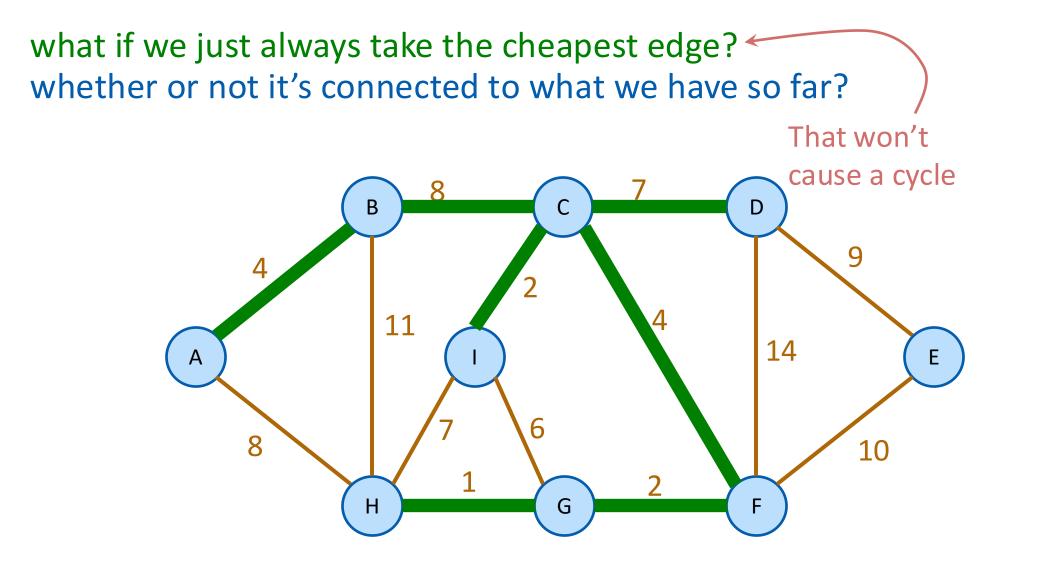


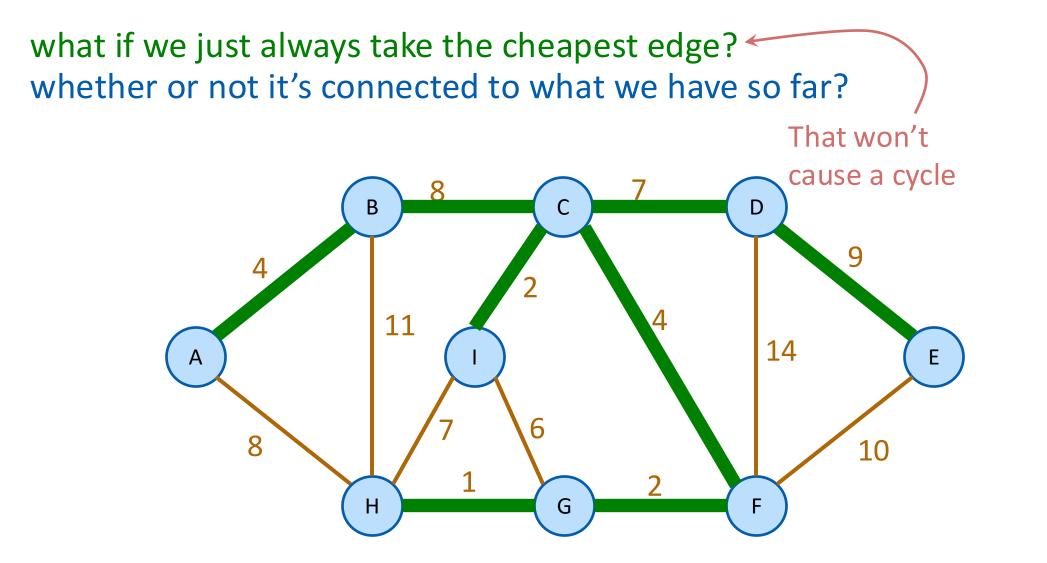












- slowKruskal(G = (V,E)):
 - Sort the edges in E by non-decreasing weight.
 - MST = {}
 - **for** e in E (in sorted order):
 - **if** adding e to MST won't cause a cycle:
 - add e to MST.

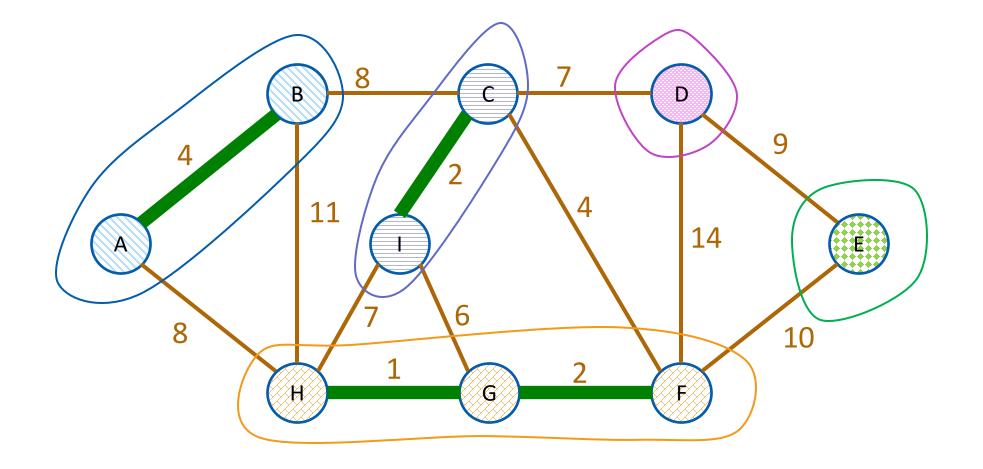
How do we check this?

m iterations through this loop

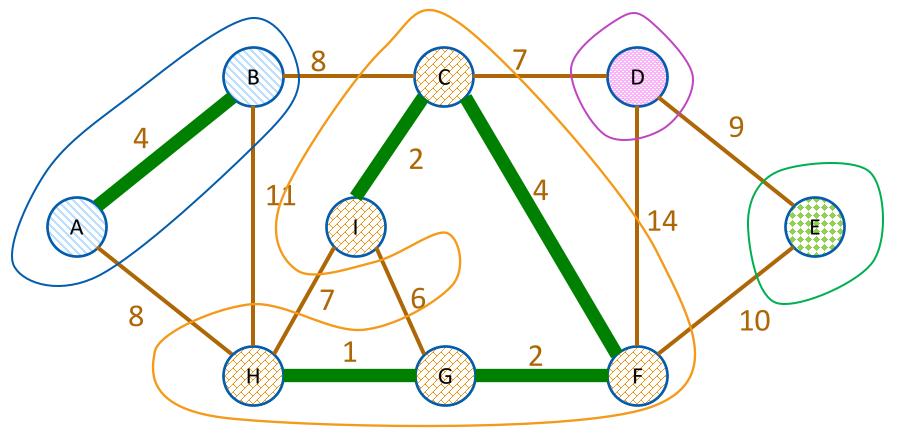
- return MST



At each step of Kruskal's, we are maintaining a forest.



At each step of Kruskal's, we are maintaining a forest. When we add an edge, we merge two trees:

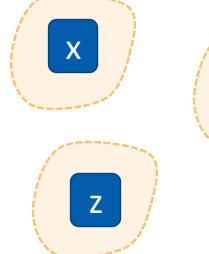


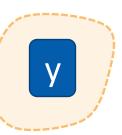
Union-find data structure

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in....

makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)



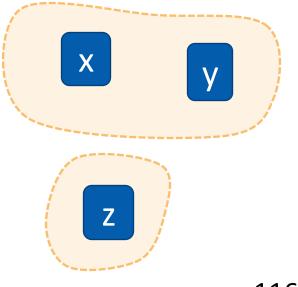


Union-find data structure

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in.

makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

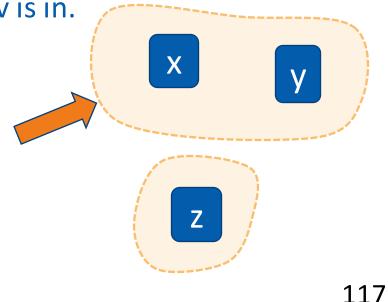


Union-find data structure

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in.

makeSet(x) makeSet(y) makeSet(z)

union(x,y) find(x)



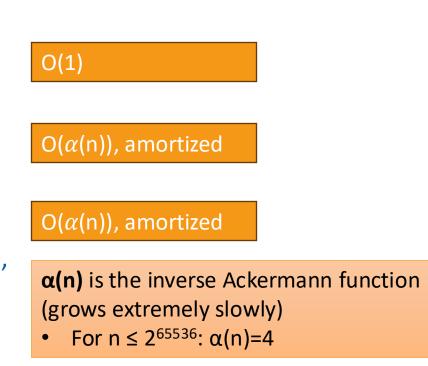
- kruskal(G = (V,E)):
 - Sort E by weight in non-decreasing order
 - $-MST = \{\}$
 - **for** v in V:
 - makeSet(v)
 - **for** (u,v) in E:
 - if find(u) != find(v):
 - add (u,v) to MST
 - union(u,v)
 - return MST

- // initialize an empty tree
- // put each vertex in its own tree in the forest
- // go through the edges in sorted order
- // if u and v are not in the same tree
- // merge u's tree with v's tree

香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU

Running time

- Sorting the edges takes O(m log(n))
 - In practice, if the weights are small integers we can use radixSort and take time O(m)
- For the rest:
 - n calls to makeSet
 - put each vertex in its own set
 - 2m calls to find
 - for each edge, find its endpoints
 - n-1 calls to union
 - we will never add more than n-1 edges to the tree,
 - so we will never call **union** more than n-1 times.
- Total running time: O(mlog(n))



Does it work?

Leave for your assignment.

- Prim:
 - Grows a tree.
 - Time O(mlog(n)) with a red-black tree
 - Time O(m + nlog(n)) with a Fibonacci heap
- Kruskal:
 - Grows a forest.
 - Time O(mlog(n)) with a union-find data structure
 - If you can do radixSort on the weights, morally "O(m)"

Prim might be a better idea on dense graphs if you can't radixSort edge weights

Kruskal might be a better idea on sparse graphs if you can radixSort edge weights

Comparison

Are they greedy algorithms? YES, BOTH

- Prim:
 - Grows a tree.
- Node centric
- Time O(mlog(n)) with a red-black tree
- Time O(m + nlog(n)) with a Fibonacci heap
- Kruskal:
 - Grows a forest.
- Edge centric
- Time O(mlog(n)) with a union-find data structure
- If you can do radixSort on the weights, morally "O(m)"

Prim might be a better idea on dense graphs if you can't radixSort edge weights

Kruskal might be a better idea on sparse graphs if you can radixSort edge weights

Can we do better?

香港科技大学(厂州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU

- Karger-Klein-Tarjan 1995:
 - O(m) time randomized algorithm
- Chazelle 2000:
 - O(m· $\alpha(n)$) time deterministic algorithm
- Pettie-Ramachandran 2002:

O The optimal number of comparisons you need to solve the problem, whatever that is...

time deterministic algorithm