### DSAA 2043 | Design and Analysis of Algorithms



# Graph Algorithms (I)

Basic Definitions and Applications
 Graph Connectivity and Graph Traversal
 Connectivity in Directed Graphs
 DAGs & Topological Ordering

### Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025



# **Basic Definitions and Applications**



- A graph: a group of vertices and edges that are used to connect these vertices
- Definition: A graph G can be defined as an ordered set G(V, E)
  - *V* represents the set of vertices/nodes

Definition

• *E* represents the set of edges which are used to connect *V* 

### **Applications: Social Network**



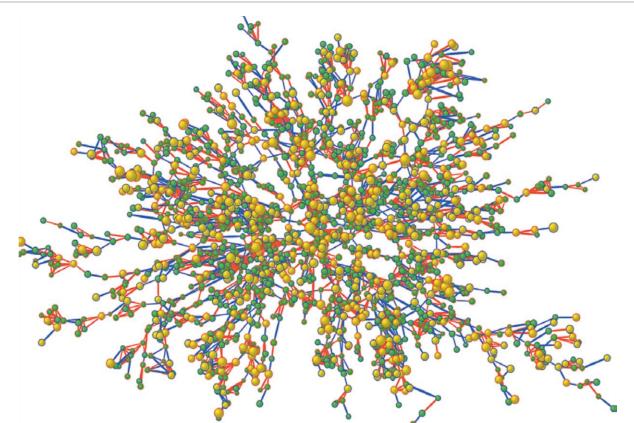
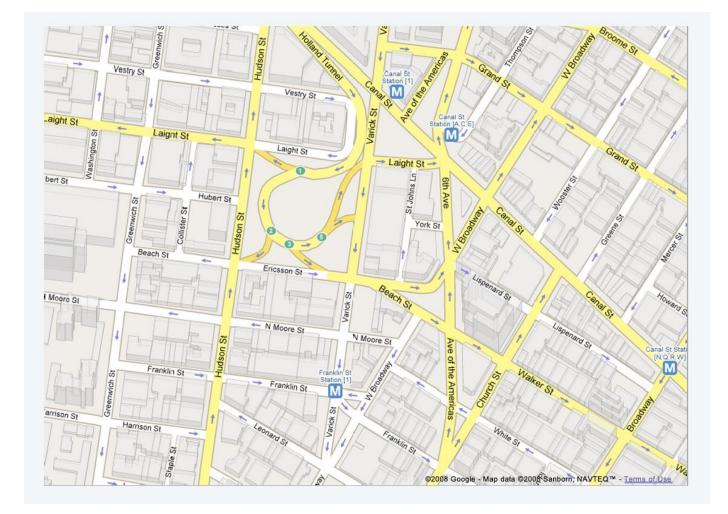


Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000. Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is proportional to the person's body-mass index. The interior color of the circles indicates the person's obesity status: yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange denotes a familial tie.



### **Road Network**

### Node = intersection; edge = street.



### **More Applications**

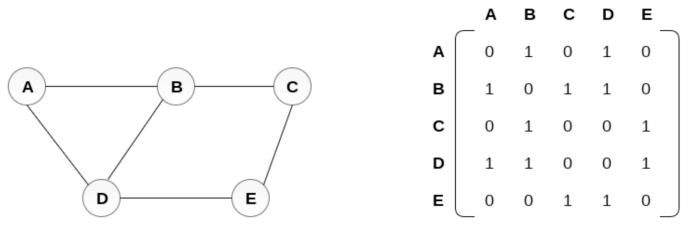


| graph               | node                         | edge                        |
|---------------------|------------------------------|-----------------------------|
| communication       | telephone, computer          | fiber optic cable           |
| circuit             | gate, register, processor    | wire                        |
| mechanical          | joint                        | rod, beam, spring           |
| financial           | stock, currency              | transactions                |
| transportation      | street intersection, airport | highway, airway route       |
| internet            | class C network              | connection                  |
| game                | board position               | legal move                  |
| social relationship | person, actor                | friendship, movie cast      |
| neural network      | neuron                       | synapse                     |
| protein network     | protein                      | protein-protein interaction |
| molecule            | atom                         | bond                        |

### **Sequential Representation**

- Use adjacency matrix to store the mapping represented by vertices and edges
- In adjacency matrix, the rows and columns are represented by the graph vertices
- For a graph having n vertices, the adjacency matrix will have a dimension  $n \times n$

 Undirected: an entry A<sub>ij</sub> in the adjacency matrix will be 1 if there exists an edge between v<sub>i</sub> and v<sub>j</sub>.



Undirected Graph

Adjacency Matrix

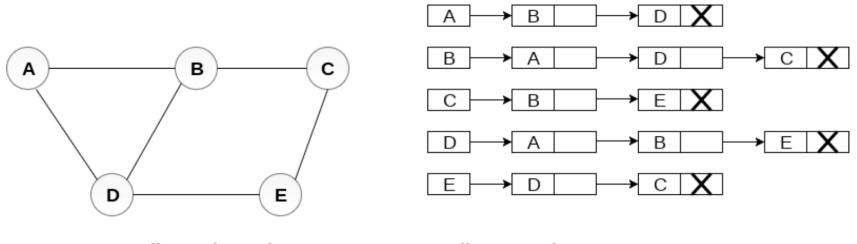


### **Linked Representation**

- An adjacency list is used to store the Graph into the computer's memory
- An adjacency list is maintained for each node present in the graph which stores the node value and a pointer to the next adjacent node to the respective node
- If all the adjacent nodes are traversed, then store the NULL in the pointer field of last node of the list

### **Linked Representation**

• Undirected: The sum of the lengths of adjacency lists is equal to the twice of the number of edges



Undirected Graph

Adjacency List



- Path: a sequence of edges connecting initial node  $v_0$  to terminal node  $v_n$
- Closed Path: A path where the initial node is same as terminal node, i.e.,  $v_0 = v_n$
- Simple Path: all the nodes of the path are distinct, with the exception  $v_0 = v_n$
- Closed Simple Path: a simple path with  $v_0 = v_n$
- Cycle: a path which has no repeated edges or vertices except the first and last vertices
- Adjacent Nodes: two nodes *u* and *v* are connected via an edge *e* 
  - the nodes u and v are also called as neighbors
- Degree of a Node: the number of edges that are connected with the node
  - A node with degree 0 is called as isolated node



- Connected Graph: a graph in which a path exists between every two vertices u and v in V
  - There are no isolated nodes in connected graph

Terminology

- Complete Graph: a graph in which there is an edge between each pair of vertices
  - A complete graph contain n(n-1)/2 edges where n is the number of nodes in the graph
- Weighted Graph: each edge is assigned with some data such as length or weight
  - The weight of an edge e, w(e), must be positive indicating the cost of traversing the edge
- Digraph: each edge of the graph is associated with some direction
  - The traversing can be done only in the specified direction





# Graph Traversal



- s-t connectivity problem: Given two nodes s and t, is there a path between s and t?
- s-t shortest path problem: Given two nodes s and t, what is the length of a shortest path between s and t?
- Applications
  - Friendster
  - Maze traversal

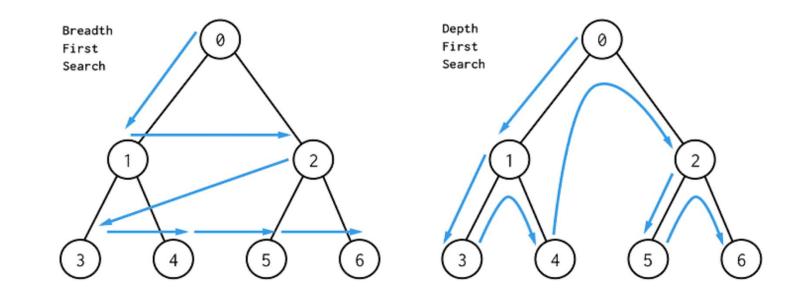
Connectivity

- Kevin Bacon number
- Fewest hops in a communication network



### **Graph Traversal**

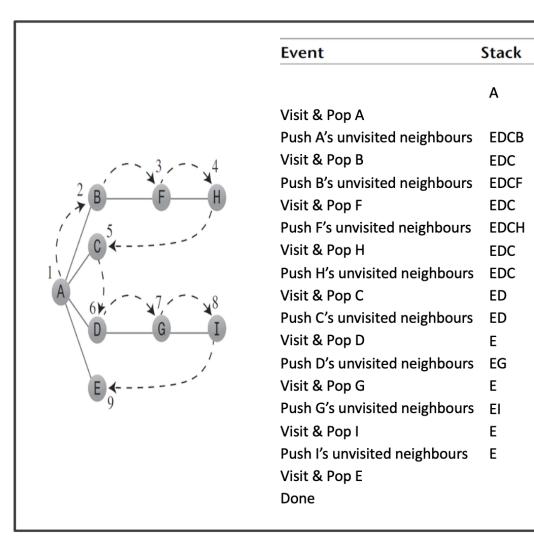
- Traversing the graph means examining all the nodes and vertices of the graph
- Two standard methods to traverse graphs
  - Breadth First Search
  - Depth First Search



### **Depth First Search (Stack-Based)**

- DFS: starts with the initial node, and then goes to deeper and deeper until we find the goal node or the node which has no children. The algorithm, then backtracks from the dead end towards the most recent node that is yet to be completely unexplored.
  - Step 1: SET STATUS as UNVISITED (ready state) for each node in G
  - Step 2: Push the starting node A on the stack
  - Step 3: Repeat Steps 4 and 5 until STACK is empty
  - Step 4: Pop the top node N. If node N is VISITED, repeat Step 4; Otherwise, process it and set its STATUS as VISITED (processed state)
  - Step 5: Push on the stack all the neighbours of N with STATUS UNVISITED
  - Step 6: EXIT

### **Depth First Search (Stack-Based)**

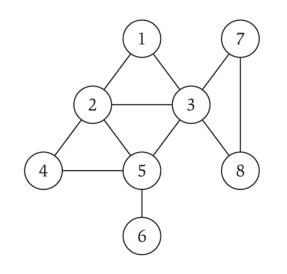


- Rule 1: Push every unvisited neighbour (if there is one) of the current vertex on the stack
- Rule 2: If you can't carry out Rule 1 because there are no more unvisited vertices, pop vertices from the stack (if possible) until a vertex is unvisited, mark it visited, and make it the current vertex
- Rule 3: If you can't carry out Rule 1&2 because the stack is empty, you're done

**Time complexity** O(m + n), with an adjacency list

### **Depth First Search (Recursion-Based)**

DFS-recursive(G, s):
 mark s as visited
 for all neighbours w of s in Graph G:
 if w is not visited:
 DFS-recursive(G, w)

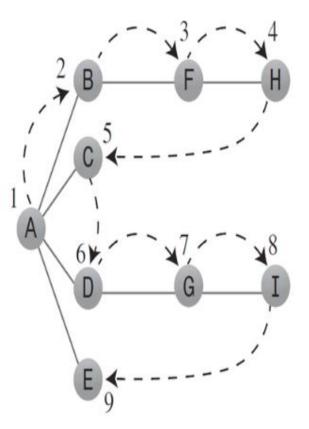


Assume that we follow neighbours with smaller ID first DFS-recursive(G, 1) = [1, 2, 4, 5, 6, **3**, 7, 8] **Time complexity** O(n + m), when implemented using an adjacency list.





### Now try to implement the two DFS traversal algorithms (20 min)

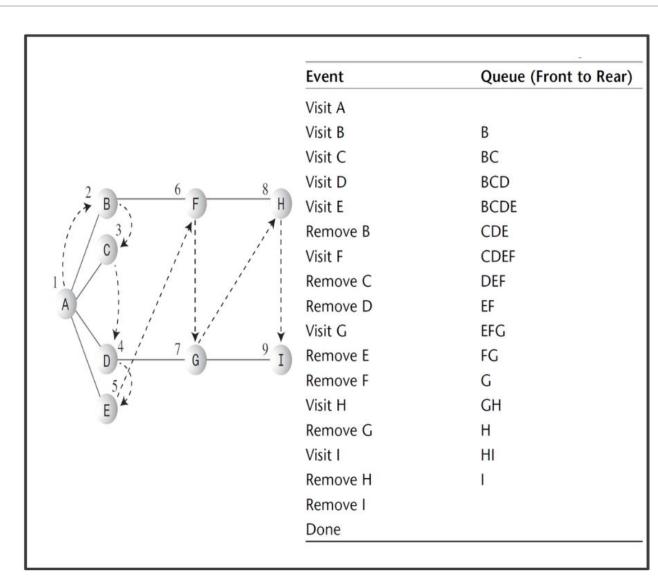




- 香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)
- BFS: starts traversing the graph from root node and explores all the neighbours. Then, it selects the nearest node and explore all the unexplored nodes. It follows the same process for each of the nearest node until it finds the goal.
  - Step 1: SET STATUS = 1 (ready state) for each node in G
  - Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)
  - Step 3: Repeat Steps 4 and 5 until QUEUE is empty
  - Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).
  - Step 5: Enqueue all neighbours of N in the ready state (STATUS = 1) and set their STATUS = 2
  - Step 6: EXIT

### **Breadth First Search**

| 香港科技大学(广州)<br>THE HONG KONG<br>UNIVERSITY OF SCIENCE AND<br>TECHNOLOGY (GUANGZHOU) |
|------------------------------------------------------------------------------------|
| <br>                                                                               |



- Rule 1: Visit the next unvisited vertex (if there is one) that's adjacent to the current vertex, and insert it into the queue
- Rule 2: If you can't carry out Rule 1 because there are no more unvisited vertices, remove a vertex from the queue (if possible) and make it the current vertex
- Rule 3: If you can't carry out Rule 1&2 because the queue is empty, you're done

**Time complexity** O(m + n), when implemented using an adjacency list



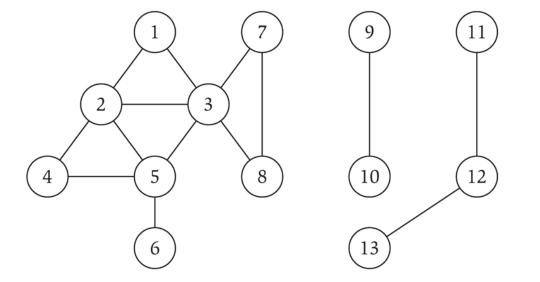


# Graph Connectivity



香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

Connected component: find all nodes reachable from s

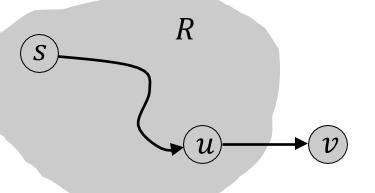


Connected component containing node 1 is [1, 2, 3, 4, 5, 6, 7, 8]

### **Connected Component**

• Connected component: find all nodes reachable from s

```
R will consist of nodes to which s has a path Initially R=\{s\} While there is an edge (u,v) where u\in R and v\not\in R Add v to R Endwhile
```



it's safe to add v

Theorem. Upon termination, R is the connected component containing s

- BFS = explore in order of distance from *s*
- DFS = explore in a different way





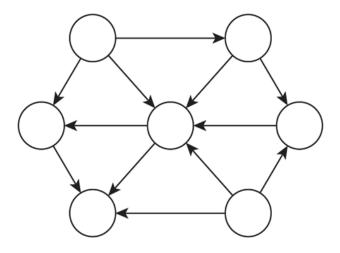
# Connectivity in Directed Graphs

### **Directed Graph**



### Notation: G = (V, E)

• Edge (*u*, *v*) leaves node *u* and enters node *v* 



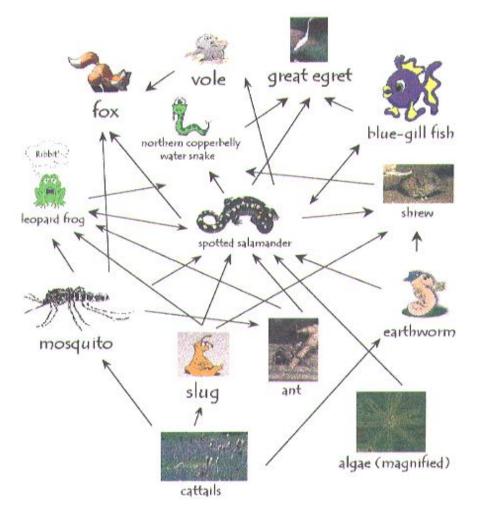
- Ex. Web graph: hyperlink points from one web page to another
  - Orientation of edges is crucial
  - Modern web search engines exploit hyperlink structure to rank web pages by importance

### 27

# **Application: Ecological Food Web**

### Food web graph

- Node = species
- Edge = from prey to predator





# **More Applications**

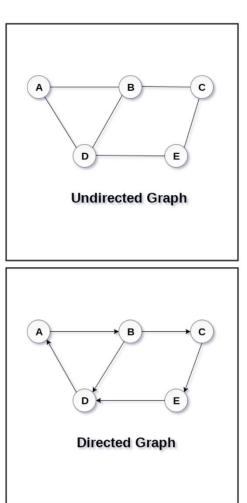


| directed graph        | n o d e             | directed edge              |
|-----------------------|---------------------|----------------------------|
| transportation        | street intersection | one-way street             |
| w e b                 | web page            | hyperlink                  |
| food web              | species             | predator-prey relationship |
| WordNet               | synset              | hypernym                   |
| scheduling            | task                | precedence constraint      |
| financial             | bank                | transaction                |
| cell phone            | person              | placed call                |
| infectious disease    | person              | infection                  |
| g a m e               | board position      | legal move                 |
| citation              | journal article     | citation                   |
| object graph          | object              | pointer                    |
| inheritance hierarchy | class               | inherits from              |
| control flow          | code block          | jump                       |

### **Undirected V.S. Directed**

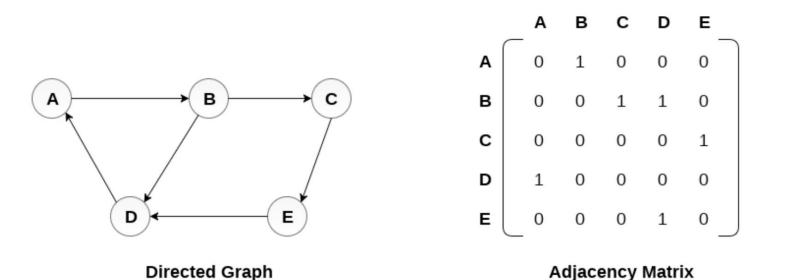
- In an undirected graph, edges are not associated with the directions with them
  - If an edge exists between vertex A and B then the vertices can be traversed from B to A as well as A to B

- In a directed graph, edges form an ordered pair
  - Edges represent a specific path from some vertex A to another vertex B
  - Node A is called initial node while node B is called terminal node



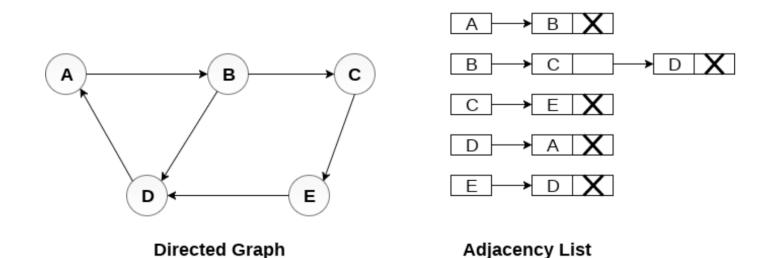


• Directed: an entry  $A_{ij}$  in the adjacency matrix will be 1 if there exists an edge directly from  $v_i$  to  $v_j$ 



### **Linked Representation**

• Directed: The sum of the lengths of adjacency lists is equal to the number of edges





• Directed reachability: Given a node *s*, find all nodes reachable from *s* 

**Graph Search** 

 Directed s ~ t shortest path problem: Given two nodes s and t, what is the length of a shortest path from s to t?

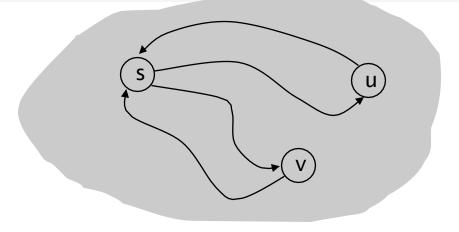
coming soon!

• Graph Traversal: BFS and DFS extend naturally to directed graphs

### **Strong Connectivity**

- Def. Nodes u and v are mutually reachable if there is both a path from u to v and also a path from v to u
- Def. A graph is strongly connected if every pair of nodes is mutually reachable
- Lemma. Let *s* be any node. *G* is strongly connected iff every node is reachable
  - **Pf.**  $\Rightarrow$  Follows from definition
  - **Pf.**  $\leftarrow$  Path from *u* to *v*: concatenate *u*~*s* path with *s*~*v* path

Path from v to u: concatenate  $v \sim s$  path with  $s \sim u$  path



ok if paths overlap

# **Strong Connectivity: Algorithm**

• Theorem. Can determine if G is strongly connected in O(m + n) time

Pf.

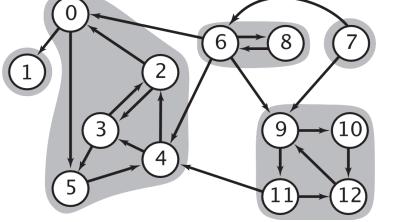
– Pick any node s

reverse orientation of every edge in G

- Run BFS from *s* in *G*
- Run BFS from *s* in *G* reverse
- Return true iff all nodes reached in both BFS executions
- Correctness follows immediately from previous lemma

### **Strong Components**

Def. A strong component is a maximal subset of mutually reachable nodes



### Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time

SIAM J. Сомрит. Vol. 1, No. 2, June 1972

#### DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS\*

ROBERT TARJAN†

**Abstract.** The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by  $k_1V + k_2E + k_3$  for some constants  $k_1, k_2$ , and  $k_3$ , where V is the number of vertices and E is the number of edges of the graph being examined.

# **Tarjan's Algorithm: Overview**



#### **1. Initialization**:

- 1. Assign a unique index to each node, initialize as undefined
- 2. Assign a lowlink value to each node, initialize as undefined
- 3. Create an empty stack to keep track of nodes in the current search path
- 4. Create an empty list to store the strongly connected components (SCCs)

#### 2. Depth-First Search (DFS) Loop:

- 1. For each node v in the graph:
  - 1. If v has not been visited:
    - 1. Call the strongConnect function on  $\boldsymbol{v}$

#### 3. strongConnect Function:

- 1. Set the index of v to the current global index
- 2. Set the lowlink of v to the current global index
- 3. Push v onto the stack
- 4. Mark v as being on the stack
- 5. Increment the global index

#### 4. Explore Adjacent Nodes:

- 1. For each adjacent node u of v:
  - 1. If u has not been visited:
    - 1. Recursively call strongConnect(*u*)
    - 2. Update the lowlink of v to the minimum of v.lowlink and u.lowlink
  - 2. If *u* is on the stack:
    - 1. Update the lowlink of v to the minimum of v.lowlink and u.index

### 5. Identify SCC:

- 1. If the lowlink of v is equal to its index:
  - 1. Pop nodes from the stack until v is popped
  - 2. Each popped node is part of a new SCC
  - 3. Add the popped nodes to the list of SCCs

#### 6. Output:

 After all nodes have been processed, the list of SCCs contains all the strongly connected components of the graph

### **Tarjan's Algorithm: Pseudocode**



#### // GLOBAL VARIABLES

- // num <- global array of size V initialized to -1</pre>
- // lowest <- global array of size V initialized to -1</pre>
- // visited <- global array of size V initialized to false</pre>
- // processed <- global array of size V initialized to false</pre>
- // s <- global empty stack</pre>
- // i <- 0

#### algorithm TarjanAlgorithm(G):

```
// INPUT
// G = the graph
// OUTPUT
// SCCs of G are found
```

```
visted <- an empty global visited map
for v in G.V:
    if visited[v] = false:
        // global variables are accessible from within DFS
        DFS(G, v)</pre>
```

#### algorithm **DFS**(G, v):

```
// INPUT
// G = the graph
// v = the current vertex
// OUTPUT
// Vertices reachable from v are processed, their SCCs are reported
```

```
num[v] <- i
lowest[v] <- num[v]
i <- i + 1
visited[v] <- true
s.push(v)</pre>
```

```
for u in G.neighbours[v]:
    if visited[u] = false:
        DFS(G, u)
        lowest[v] <- min(lowest[v], lowest[u])
    else if processed[u] = false:
        lowest[v] <- min(lowest[v], num[u])</pre>
```

#### processed[v] <- true</pre>

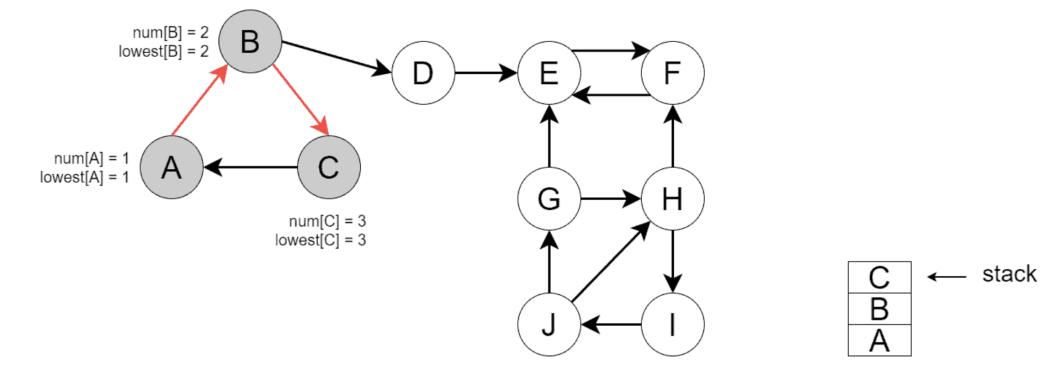
```
if lowest[v] = num[v]:
    scc <- an empty set
    sccVertex <- s.pop()</pre>
```

```
while sccVertex != v:
    scc.add(sccVertex)
    sccVertex <- s.pop()</pre>
```

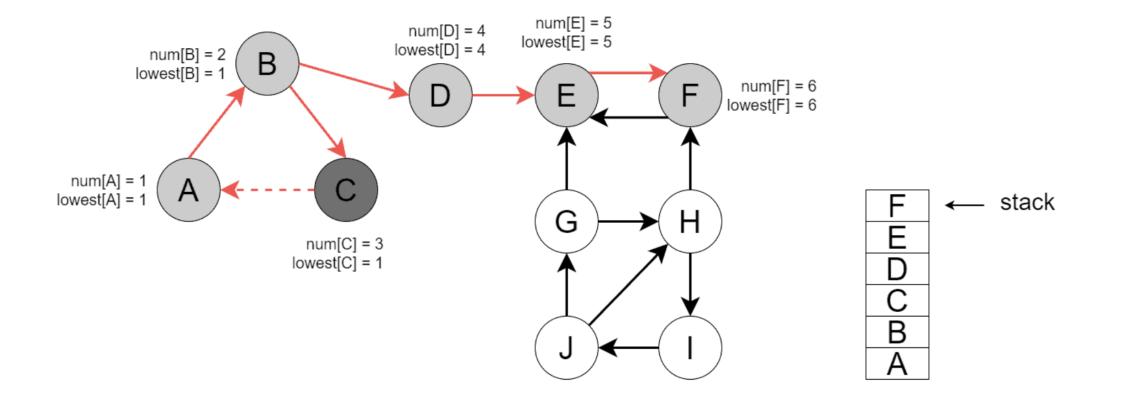
```
scc.add(sccVertex)
```

Process the found scc in the desired way

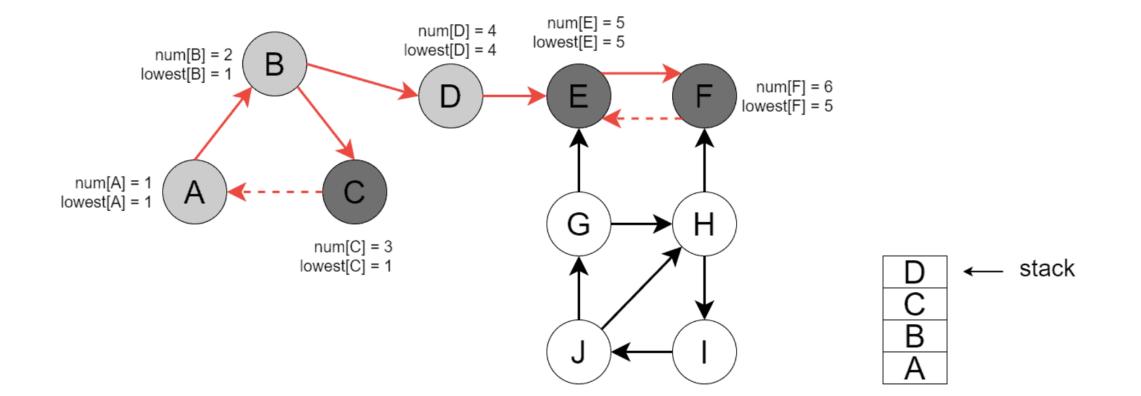
#### return



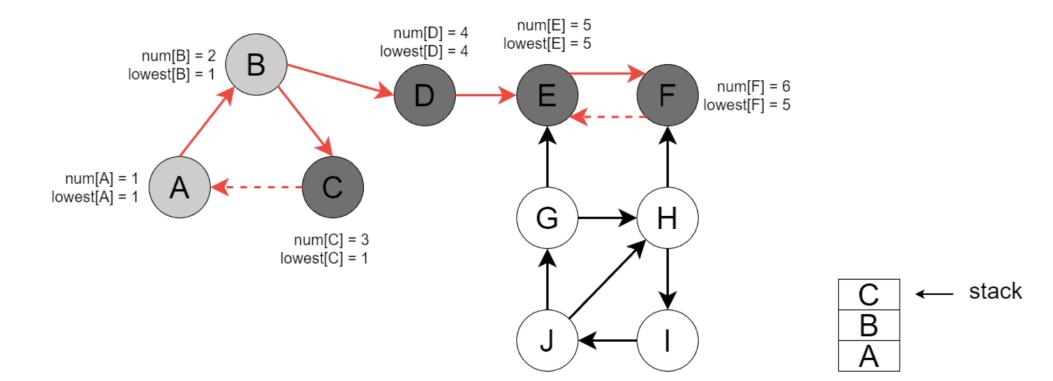
香港科技大学(广州)



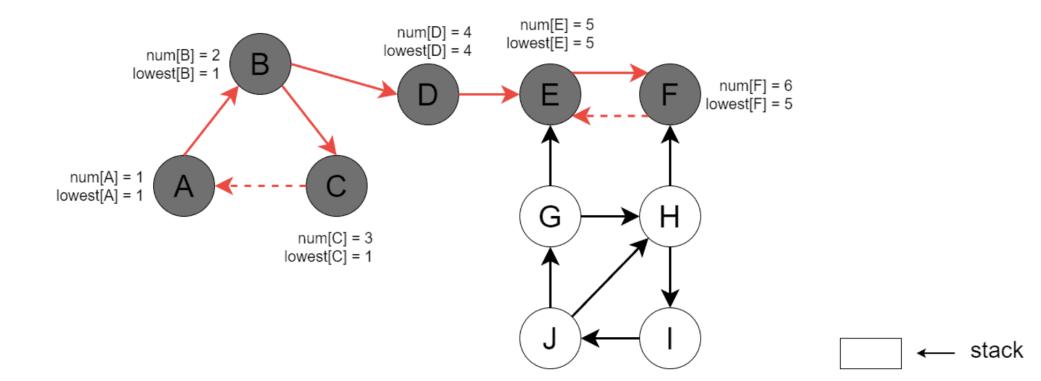
香港科技大学(广州)



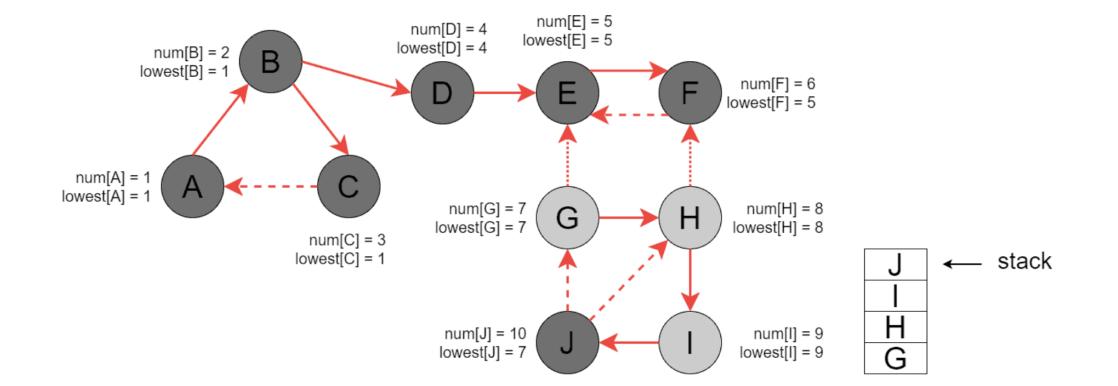
香港科技大学(广州)



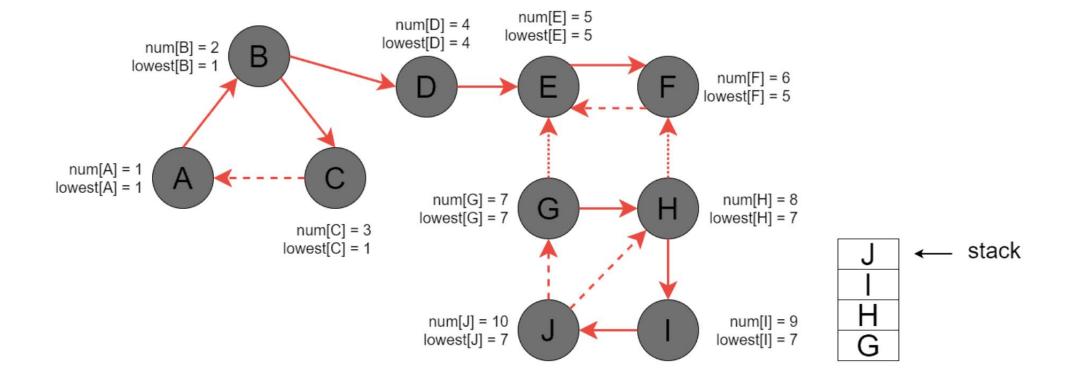
香港科技大学(广州)



香港科技大学(广州)

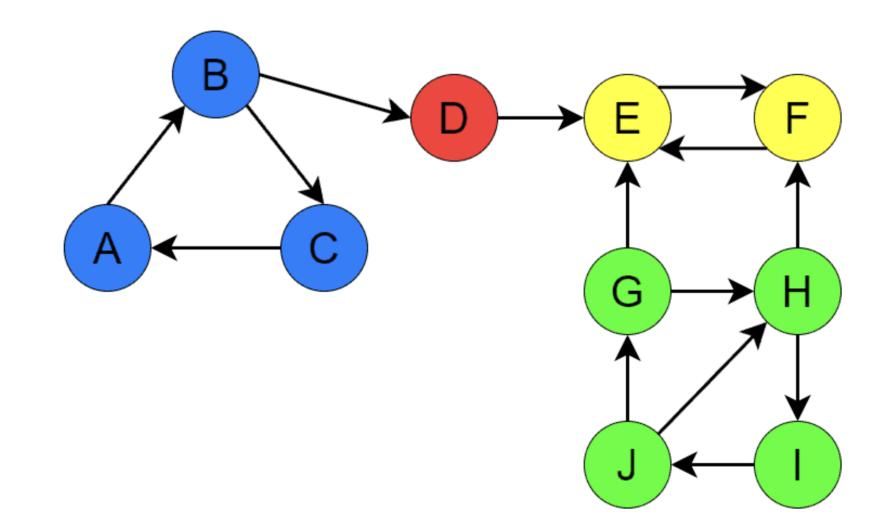


香港科技大学(广州)



香港科技大学(广州)





## **Tarjan's Algorithm**

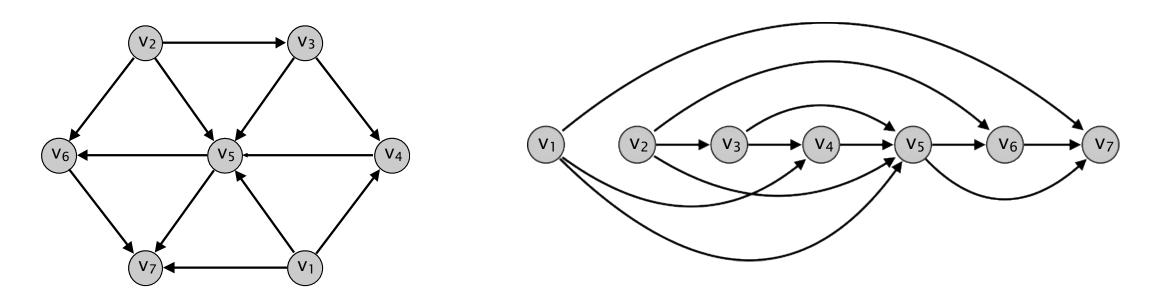
- 香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)
- Tarjan's algorithm is a modification of the DFS traversal. Hence, the complexity of the algorithm is linear: O(n + m)
  - To achieve the mentioned complexity, we must use the adjacency list representation of the graph
- Tarjan's algorithm for finding strongly connected components in directed graphs. It's an optimal linear time algorithm
- More Tarjan's algorithms, have a try if you are interested!



# DAG & Topological Ordering

• Def. A DAG is a directed graph that contains no directed cycles

 Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub> so that for every edge (v<sub>i</sub>, v<sub>j</sub>) we have i < j</li>



a topological ordering

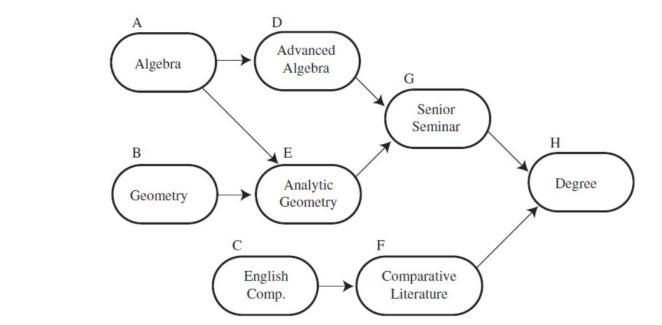
a DAG

#### **Precedence Constraints**

- 香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)
- Precedence constraints. Edge  $(v_i, v_j)$  means task  $v_i$  must occur before  $v_j$
- Applications

 $v_i$ 

- Course prerequisite graph: course  $v_i$  must be taken before  $v_j$
- Compilation: module  $v_i$  must be compiled before  $v_j$
- Pipeline of computing jobs: output of job  $v_i$  needed to determine input of job





Lemma. If G has a topological order, then G is a DAG

#### Pf. [by contradiction]

- Suppose that G has a topological order  $v_1, v_2, \dots, v_n$  and that G also has a directed cycle C
- Let  $v_i$  be the lowest-indexed node in C, and let  $v_j$  be the node just before  $v_i$ ; thus  $(v_j, v_i)$  is an edge
- By our choice of i, we have i < j
- On the other hand, since (v<sub>j</sub>, v<sub>i</sub>) is an edge and v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub> is a topological order, we must have j < i, a contradiction</li>

the supposed topological order:  $v_1, ..., v_n$ 

the directed cycle C



Lemma. If G has a topological order, then G is a DAG

**Q**. Does every DAG have a topological ordering?

**Q**. If so, how do we compute one?



Lemma. If G is a DAG, then G has a node with no entering edges

#### Pf. [by contradiction]

- Suppose that G is a DAG and every node has at least one entering edge
- Pick any node v, and begin following edges backward from v. Since v has at least one entering edge (u, v) we can walk backward to u
- Then, since u has at least one entering edge (x, u), we can walk backward to x
- Repeat until we visit a node, say w, twice
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle

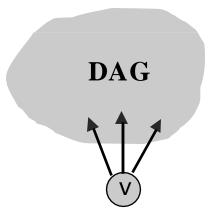
香港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

Lemma. If G is a DAG, then G has a topological ordering

**Pf.** [by induction on *n*]

- Base case: true if n = 1
- Given DAG on n > 1 nodes, find a node v with no entering edges
- $G \{v\}$  is a DAG, since deleting v cannot create cycles
- By inductive hypothesis,  $G \{v\}$  has a topological ordering
- Place v first in topological ordering; then append nodes of G − {v} in topological order. This is valid since v has no entering edges

```
To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of G-\{v\}
and append this order after v
```



## **Topological Sorting Algorithm**

• Theorem. Algorithm finds a topological order in O(m + n) time

• Pf.

- Maintain the following information:
  - *count*(*w*) = remaining number of incoming edges
  - *S* = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph
- Update: to delete v
  - remove v from S
  - decrease count(w) for all edges from v to w; and add w to S if count(w) hits 0
  - this is O(1) per edge
- Topological-sort cannot handle graphs with cycles!





- Graphs definition
- Graphs representation
- Graph search algorithms
- Connected components in directed/undirected graphs
- Tarjan's Algorithm
- DAGs and Topological orders