EEREXRZ (M)

DSAA 2043 | Design and Analysis of Algorithms I

TECHNOLOGY (GUANGZHOU)

Graph Algorithms (I)

» Basic Definitions and Applications

» Graph Connectivity and Graph Traversal
»Connectivity in Directed Graphs
» DAGs & Topological Ordering

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025



& FEHBZAZ (M
THE HONG KONG

o

N
U0 PSS o
TECHNOLOGY (GUANGZHQOU)

Basic Definitions and Applications




' Definition

these vertices

A graph: a group of vertices and edges that are used to connect
Definition: A grap

V represents t

@ THE HONG KONG

BEEREXRZ (M

E representst

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

n G can be defined as an ordered set G(V, E)
he set of vertices/nodes

ne set of edges which are used to connect V



Applications: Social Network

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is
proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, 230) and green denotes a nonobese person. The colors of the ties
between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

w

EERERAZE (M)

THE HONG KONG
UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)



B FEHBEREZ (M
T THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

Road Network

Node = intersection; edge = street.

v - vo o W ' ~ 0
§ a 4 N/ ) /
t H & % £ &) s
g c 2, = & S S
@ S g i ) /S D
2 @ 2 & NS £ (S
Vi o kS % 5 VY 5/
Sstry 8 = % e onal Bt () "
T s Sy A 62
R 7 o Smﬁ /e (o4 S -~
/ Ves:,y St \ 909 ;gq‘ .
\ Y
H } = N\ /! /
- | 7] A% Cénal St
-aight St — f 5 T suoanpce 7 o
i7] Lai 5 Y
g ignt St = g 4 7
5 Laight sy ’ G ,
£ J e — [/ =< lLaightst— 0y
@ 1 ’ 1) s S
bert St = S [} 7/ &
= - | & | B $ ~
7 sy (4 / s HB &
§ 7] b / @ AN )
S s 2] i ERCH / >
g 2 = Y kS &)
7] < / ork St & @ i
g £ s/ '@ S & $ A
5 S & (5] S & /%
9 9 3 o —~ J LR % $
Beach st T & t 7 g}o
- N
Encsson : -
i St — 3 /7 s ‘
- %
P . ey o
1 Mosro & t @ 0 t S /2 © %,
o Si 3 x> QN7
-— >,; ~ 6} S
7 N Moore s Yy
! 73 N Moore g TN, / Py 5
|~ 7 Canal St Stat
3 / g N NQRW]
. Frank), g [3 ! S o ;
& N St o Franklin' St § @ co\ %
— Station [1] & 78 /
& Frankiin g & N 5 s g
o =
‘am, g 7] Nt/ 8.~ Y 5‘\
=0 St TR 5 b &
Ham ¢, < 0
son St — eo%’as 3 / y ‘.’a_o‘; t 117,//0\9 Q
4 | Uiy 7 4
3 Sy . N
/ X , /
g A g
A & ©2008 Google - Map data ozognganbor‘m NAVTEQ™ - Terms ofllse /|



' More Applications

B FEHBEREZ (M
T THE HONG KONG
LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

I T

telephone, computer

communication
circuit
mechanical
financial

transportation

internet
game
social relationship
neural network

protein network

molecule

gate, register, processor
joint
stock, currency

street intersection, airport

class C network
board position
person, actor
neuron

protein

atom

fiber optic cable
wire
rod, beam, spring
transactions

highway, airway route

connection
legal move
friendship, movie cast
synapse

protein-protein interaction

bond



' Sequential Representation W i

e Use adjacency matrix to store the mapping represented by vertices
and edges

* In adjacency matrix, the rows and columns are represented by the
graph vertices

* For a graph having n vertices, the adjacency matrix will have a
dimensionn X n



' Sequential Representation W i

* Undirected: an entry A;; in the adjacency matrix will be 1 if there
exists an edge between v; and v;.

/ N

|

)

m w) O w >

)
-
(] o
(] o
-

Undirected Graph Adjacency Matrix



' Linked Representation Wi i

* An adjacency list is used to store the Graph into the computer's
memory

* An adjacency list is maintained for each node present in the graph
which stores the node value and a pointer to the next adjacent node
to the respective node

* If all the adjacent nodes are traversed, then store the NULL in the
pointer field of last node of the list



' Linked Representation

B FEHBEREZ (M
T THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

* Undirected: The sum of the lengths of adjacency lists is equal to
the twice of the number of edges

Undirected Graph

[AF—{B[] F—{D[X]
[(BF—{A] F—>{D] }—{c[X]
lCF—1B| I E[X]
D> A] B| —E]|[X]
lEF—{D] F—{c[X]

Adjacency List

10



B FERFARFETM
T i | UL oniveesi o science an
erminology 00 e
n

* Path: a sequence of edges connecting initial node v, to terminal node v,
* Closed Path: A path where the initial node is same as terminal node, i.e., vy = v,

* Simple Path: all the nodes of the path are distinct, with the exception vy = v,

Closed Simple Path: a simple path with vy = v,

Cycle: a path which has no repeated edges or vertices except the first and last
vertices

Adjacent Nodes: two nodes u and v are connected via an edge e
— the nodes u and v are also called as neighbors

* Degree of a Node: the number of edges that are connected with the node
— A node with degree O is called as isolated node

11



B FERFARFETM

T i | UL oniveesi o science an
erminology 00 e
n

Connected Graph: a graph in which a path exists between every two vertices u
andvinl
— There are no isolated nodes in connected graph

Complete Graph: a graph in which there is an edge between each pair of vertices
— A complete graph contain n(n — 1) /2 edges where n is the number of nodes in the graph

Weighted Graph: each edge is assigned with some data such as length or weight
— The weight of an edge e, w(e), must be positive indicating the cost of traversing the edge

Digraph: each edge of the graph is associated with some direction
— The traversing can be done only in the specified direction

12



& FEHBZAZ (M

75 THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

Graph Traversal

13



' Connectivity

between s and t?

e s—t connectivity problem: Given two nodes s and t, is there a path
e s—t shortest path problem: Given two nodes s and t, what is the
e Applications

— Friendster

@ THE HONG KONG

EERBEKZ (I
— Maze traversal

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

length of a shortest path between s and t?
— Kevin Bacon number

— Fewest hops in a communication network

14



B FERFARFETM
G h T I l JJ IJFILIIEI\I;'EOR;‘I%K&NS%IENCE AND
ra p rave rsa LA TECHNOLOGY (GUANGZHOU)

|

* Traversing the graph means examining all the nodes and vertices of
the graph

* Two standard methods to traverse graphs
— Breadth First Search
— Depth First Search

Breadth
First
Search

15



B FERFARFETM

' Depth First Search (Stack-Based) W s

e DFS: starts with the initial node, and then goes to deeper and deeper
until we find the goal node or the node which has no children. The
algorithm, then backtracks from the dead end towards the most
recent node that is yet to be completely unexplored.

— Step 1: SET STATUS as UNVISITED (ready state) for each node in G
e Step 2: Push the starting node A on the stack

— Step 3: Repeat Steps 4 and 5 until STACK is empty
— Step 4: Pop the top node N. If node N is VISITED, repeat Step 4; Otherwise,

process it and set its STATUS as VISITED (processed state)
— Step 5: Push on the stack all the neighbours of N with STATUS UNVISITED

— Step 6: EXIT

16



' Depth First Search (Stack-Based) W e

Event

Visit & Pop A

Push A’s unvisited neighbours
Visit & Pop B

Push B’s unvisited neighbours
Visit & Pop F

Push F’s unvisited neighbours
Visit & Pop H

Push H’s unvisited neighbours
Visit & Pop C

Push C’s unvisited neighbours
Visit & Pop D

Push D’s unvisited neighbours
Visit & Pop G

Push G’s unvisited neighbours
Visit & Pop |

Push I's unvisited neighbours

Visit & Pop E

Done

Stack

EDCB
EDC
EDCF
EDC
EDCH
EDC
EDC
ED
ED

E

EG

E

El

E

* Rule 1: Push every unvisited
neighbour (if there is one) of the current
vertex on the stack

* Rule 2: If you can’t carry out Rule 1 because
there are no more unvisited vertices, pop
vertices from the stack (if possible) until a
vertex is unvisited, mark it visited, and
make it the current vertex

* Rule 3: If you can’t carry out Rule 1&2
because the stack is empty, you’re done

Time complexity O(m + n), with
an adjacency list

17



' Depth First Search (Recursion-Based) 0 B s

DFS-recursive(G, s):
mark s as visited

for all neighbours w of s in Graph G:
if wis not visited:

DFS-recursive(G, w)

Assume that we follow neighbours with smaller ID first
DFS-recursive(G, 1) =[1, 2,4,5, 6, 3, 7, 8]

Time complexity O(n + m), when
implemented using an adjacency list.

18



B FEHBEREZ (M

T I UL Sriversiry o science avo
ra v e rs a S tA TECHNOLOGY (GUANGZHOU)

-~

Now try to implement the two DFS traversal algorithms (20 min)

19



' Breadth First Search W e

* BFS: starts traversing the graph from root node and explores all the
neighbours. Then, it selects the nearest node and explore all the
unexplored nodes. It follows the same process for each of the nearest
node until it finds the goal.

— Step 1: SET STATUS =1 (ready state) for each node in G

— Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)

— Step 3: Repeat Steps 4 and 5 until QUEUE is empty

— Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).

— Step 5: Enqueue all neighbours of N in the ready state (STATUS = 1) and set
their STATUS =2

— Step 6: EXIT

20



' Breadth First Search

Event
Visit A
Visit B
Visit C
Visit D
Visit E
Remove B
Visit F
Remove C
Remove D
Visit G
Remove E
Remove F
Visit H
Remove G
Visit |
Remove H
Remove |
Done

Queue (Front to Rear)

B

BC
BCD
BCDE
CDE
CDEF
DEF
EF
EFG
FG

GH

HI

B FEHBEREZ (M
T THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

* Rule 1: Visit the next unvisited vertex
(if there is one) that’s adjacent to the
current vertex, and insert it into the
gueue

* Rule 2: If you can’t carry out Rule 1
because there are no more unvisited
vertices, remove a vertex from the
qgueue (if possible) and make it the
current vertex

* Rule 3: If you can’t carry out Rule 1&2
because the queue is empty, you're
done

Time complexity O(m + n), when
implemented using an adjacency list

21



& FEHBZAZ (M
THE HONG KONG

Apg—
NNNNNNNNNNNNNNNNNNNNNN

L TECHNOLOGY (GUA HOU

(—

IS

Graph Connectivity

22



' Connected Component W e

* Connected component: find all nodes reachable from s

Connected component containing node 1is[1, 2,3,4,5,6,7, 8]

23



' Connected Component W e

* Connected component: find all nodes reachable from s

R will consist of nodes to which s has a path R
Initially R = {s}

While there is an edge (u,v) where ueR and v ¢R
—@

Add v to R
Endwhile

it’s safe to add v
Theorem. Upon termination, R is the connected component containing s

* BFS = explore in order of distance from s
* DFS = explore in a different way

24



& FEHBZAZ (M
THE HONG KONG

o

N
U0 PSS o
TECHNOLOGY (GUANGZHQOU)

Connectivity in Directed Graphs

25



& FEHBZAZ (M
Di d G h UL Sriversiry o science avo
I re Cte ra p {A TECHNOLOGY (GUANGZHOU)

-~

Notation: G = (V, E)

* Edge (u,v) leaves node u and enters node v

Ex. Web graph: hyperlink points from one web page to another
* Orientation of edges is crucial

* Modern web search engines exploit hyperlink structure to rank web
pages by importance

26



B FEREARE(M

' Application: Ecological Food Web W S

Food web graph
* Node = species

* Edge = from prey to predator

e

M / VO le g lea{' eg ret

fox Fi _ RS
- 7
northern copperbelly blue 9'“ fis!
water snake
Sy ——

spotted salamander T

\

algae (magnified)

27



B FEHBEREZ (M
T THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

More Applications
I N N

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

28



' Undirected V.S. Directed

o e a0
W e o somes.n
n
* Inan undirected graph, edges are not associated with the
directions with them
([

If an edge exists between vertex A and B then the vertices can
be traversed from B to A as wellas Ato B

Vi

(D

E )
[

Undirected Graph

In a directed graph, edges form an ordered pair

Edges represent a specific path from some vertex A to
another vertex B

A > B

Node A is called initial node while node B is called terminal
node

| D «— E |

Directed Graph

29



' Sequential Representation W i

* Directed: an entry A;; in the adjacency matrix will be 1 if there exists
an edge directly from v; to v;

A 0 1 0 0 0
' =B >C B| o0 0 1 1 0
C 0 0 0 0 1
D 1 0 0 0 0
(D e () El o 0 0 1 o |
Directed Graph Adjacency Matrix

30



' Linked Representation

B FEHBEREZ (M
T THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

 Directed: The sum of the lengths of adjacency lists is equal to

the number of edges

(A) » B ——C)
(D) (e)

Directed Graph

B | X

c[ F—>{b[X]
L E | X

| D A [ X]

D | X

Adjacency List

31



' Graph Search

@ THE HONG KONG

BEEREXRZ (M

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

* Directed reachability: Given a node s, find all nodes reachable from s

* Directed s ~ t shortest path problem: Given two nodes s and t, what
is the length of a shortest path from s to t? v\

coming soon!

* Graph Traversal: BFS and DFS extend naturally to directed graphs

32



B FERFARFETM
[J [J W THE HONG KONG
- Strong Connectivity U0 s s
-~

e Def. Nodes u and v are mutually reachable if there is both a path from u to v and
also a path fromv tou

* Def. A graph is strongly connected if every pair of nodes is mutually reachable

* Lemma. Let s be any node. G is strongly connected iff every node is reachable
Pf. — Follows from definition
Pf. < Path from uto v: concatenate u~s path with s~v path

Path from v to u: concatenate v~s path with s~u path "

ok if paths overlap

33



' Strong Connectivity: Algorithm W e

* Theorem. Can determine if G is strongly connected in O(m + n) time

Pf.

— Pick any node s reverse orientation of every edge in G
— Run BFS fromsin G /

— Run BFS from s in G reverse

— Return true iff all nodes reached in both BFS executions

— Correctness follows immediately from previous lemma =

34



Strong Components

B FEHBEREZ (M

T THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

* Def. A strong component is a maximal subset of mutually reachable

nodes

Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time

SIAM J. CoMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

Abstract. The value of depth-first search or ““backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
kyV + k,E + ks for some constants k, , k,, and k3, where Vis the number of vertices and E is the number
of edges of the graph being examined.

35



Tarjan’s Algorithm: Overview

1. Initialization:

1.
2.
3.

4.

Assign a unique index to each node, initialize as undefined
Assign a lowlink value to each node, initialize as undefined

Create an empty stack to keep track of nodes in the current
search path

Create an empty list to store the strongly connected
components (SCCs)

2.Depth-First Search (DFS) Loop:

1.

For each node v in the graph:

1. If v has not been visited:
1. Call the strongConnect function on v

3.strongConnect Function:

1.

AR N

Set the index of v to the current global index
Set the lowlink of v to the current global index
Push v onto the stack

Mark v as being on the stack

Increment the global index

B FERFARFETM

L—'- THE HONG KONG

WJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)

4. Explore Adjacent Nodes:

1. For each adjacent node u of v:

1. If u has not been visited:
1. Recursively call strongConnect(u)

2. Update the lowlink of v to the minimum

of v.lowlink and u.lowlink
2. If uis on the stack:

1. Update the lowlink of v to the minimum of

v.lowlink and u.index

5. Identify SCC:

1. If the lowlink of v is equal to its index:

1. Pop nodes from the stack until v is popped

2. Each popped node is part of a new SCC

3. Add the popped nodes to the list of SCCs

6. Output:

1. After all nodes have been processed, the list
of SCCs contains all the strongly connected

components of the graph

36



// GLOBAL VARIABLES

//
//
//
//
//
//

num <- global array of size V 1initialized to -1

lowest <- global array of size V 1initialized to -1
visited <- global array of size V 1initialized to false
processed <- global array of size V 1initialized to false
s <- global empty stack

i<-0

algorithm TarjanAlgorithm(G):

// INPUT

// G = the graph

// OUTPUT

!/ SCCs of G are found

visted <- an empty global visited map
for v in G.V:
if visited[v] = false:
// global variables are accessible from within DFS
DFS(G, v)

Tarjan’s Algorithm: Pseudocode

algorithm DFS(G, v):

// INPUT

// G = the graph

// v = the current vertex
// OUTPUT

B FEHBEREZ (M
3731 THE HONG KONG
umj UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

// Vertices reachable from v are processed, their SCCs are reported

num[v] <- 1
lowest[v] <= num[v]
i<-1+1
visited[v] <- true
s.push(v)

for u in G.neighbours[v]:
if visited[u] = false:
DFS(G, u)
lowest[v] <- min(lowest[v], lowest[u])
else if processed[u] = false:
lowest[v] <- min(lowest[v], num[u])

processed[v] <- true
if lowest[v] = num[v]:
scc <- an empty set
sccVertex <- s.pop()
while sccVertex != v:
scc.add(sccVertex)
sccVertex <- s.pop()
scc.add(sccVertex)

Process the found scc 1in the desired way

return

37



' Tarjan’s Algorithm: An Example

num([B] = 2
lowest[B] = 2

num[A] = 1
lowest[A] = 1

num[C] =3
lowest[C] = 3

>0

B FEHBEREZ (M
= THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

«— stack

38



' Tarjan’s Algorithm: An Example W s

num[E] =5

numDI=4 - est(E] = 5

lowest[D] = 4

num(B] = 2

lowest[B] = 1
num[F] =6

lowest[F] = 6

num[A] = 1
lowest[A] = 1

«— stack

num[C] =3
lowest[C] =1

> OO mm

39



' Tarjan’s Algorithm: An Example W s

num[E] =5

numD] =4 | est[E] = 5

lowest[D] = 4

num[B] = 2
lowest[B] = 1

num[F] =6
lowest[F] =5

num[A] = 1
lowest[A] = 1

num[C] = 3
lowest[C] = 1

«— stack

> OO

40



B FEREARE(M

Tarjan’s Algorithm: An Example W s

num[E] =5
lowest[E] = 5

num[D] = 4
lowest[D] = 4

num|[B] = 2

lowest[B] = 1
num[F] =6

lowest[F] =5

num[A] = 1
lowest[A] = 1

num[C] =3
lowest[C] = 1

«— stack

> 00O

41



B FERE AR (M)

Tarjan’s Algorithm: An Example W s

- E] = 5
num[D] = 4 num( =
lowestD] =4  lowest[E] =5

num[B] = 2

lowest[B] = 1
num[F] =6

lowest[F] =5

num[A] =1
lowest[A] = 1

num[C] =3
lowest[C] = 1

«— stack

42



Tarjan’s Algorithm: An Example

= E]=5
num[D] = 4 num(E] =
num(B] = 2 lowestD] =4  'owest[E] =5
lowest[B] = 1
num[F] =6
_ lowest[F] =5
num[Al]=1 SRR =
lowest[A] = 1
. num([G] =7 num[H] =8
lowest[G] = 7 lowest[H] = 8
num|[C] =3
lowest[C] = 1
num[J] =10 num(l] =9
lowest[J] = 7 lowest[l] = 9

O|IT|—|—

B FEHBEREZ (M
3731 THE HONG KONG
umj UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

«— stack

43



Tarjan’s Algorithm: An Example

- E]=5
num[D] =4 num( B
lowest[D] = 4 lowest[E] = 5

num|[B] = 2
lowest[B] = 1 num[F] = 6
lowest[F] =5
numfA]=1 SEEEEEER o~
lowest/A] =1 num[G] = 7 num[H] = 8
lowest[G] =7 lowest[H] =7
num|[C] =3
lowest[C] = 1
num[J] =10 num[l] =9
lowest[J] = 7 lowest[l] =7

O Il—|—

B FEHBEREZ (M
3731 THE HONG KONG
umj UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

«— stack

44



' Tarjan’s Algorithm: An Example 0 s e

45



B FERFARFETM
ian’ i U s S s s
Tarjan’s Algorithm ) SEE S e e
n

e Tarjan’s algorithm is a modification of the DFS traversal. Hence, the
complexity of the algorithm is linear: O(n + m)

— To achieve the mentioned complexity, we must use the adjacency list
representation of the graph

e Tarjan’s algorithm for finding strongly connected components in
directed graphs. It’s an optimal linear time algorithm

* More Tarjan’s algorithms, have a try if you are interested!

46



& FEHBZAZ (M
THE HONG KONG

o

N
U0 PSS o
TECHNOLOGY (GUANGZHQOU)

DAG & Topological Ordering

47



' Directed Acyclic Graphs W s

* Def. A DAG is a directed graph that contains no directed cycles

* Def. A topological order of a directed graph ¢ = (V, E) is an ordering of its nodes
as vy, Uy, ..., Uy SO that for every edge (v;, v;) we have i <j

f\ 0N

? ? @—>@

a DAG a topological ordering

48



' Precedence Constraints @TJ_

* Precedence constraints. Edge (v;, v;) means task v; must occur
before v;

e Applications
— Course prerequisite graph: course v; must be taken before v;
— Compilation: module v; must be compiled before v;

D

— Pipeline of computing jobs: output of job v; needed to determine input of job
Algebra G

Uj A
Algebra
Senior
Seminar
H
. Analytic i
o0 o /
seomelry Geomelry

& F

English Comparative
Comp. Literature

49



' Directed Acyclic Graphs 0 r s e

Lemma. If G has a topological order, then G is a DAG

Pf. [by contradiction]

* Suppose that ¢ has a topological order v4, v,, ..., 1, and that G also hasa directed
cycle C

* Let v; be the lowest-indexed node in C, and let v be the node just before v;; thus
(v, v;) is an edge

* By our choice of i, we havei <j

On the other hand, since (vj, v;) is an edge and v, v,, ..., V,, is a topological order,

we must have j < i, a contradiction =

the directed cycle C

@O@@O@

the supposed topological order: vy, ..., v,

50



' Directed Acyclic Graphs W s

Lemmma. If G has a topological order, then G is a DAG
Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

51



' Directed Acyclic Graphs W e

Lemma. If G is a DAG, then G has a node with no entering edges

Pf. [by contradiction]

Suppose that G is a DAG and every node has at least one entering edge

Pick any node v, and begin following edges backward from v. Since v has at least one
entering edge (u, v) we can walk backward to u

Then, since u has at least one entering edge (x,u), we can walk backward to x

Repeat until we visit a node, say w, twice

Let C denote the sequence of nodes encountered between successive visitstow. C is a

cycle =
w OO —e(B—e( )

52



' Directed Acyclic Graphs W s

Lemma. If G is a DAG, then G has a topological ordering

Pf. [by induction on n]

Base case: trueifn =1
Given DAG on n > 1 nodes, find a node v with no entering edges

G — {v}is a DAG, since deleting v cannot create cycles

By inductive hypothesis, G — {v} has a topological ordering
Place v first in topological ordering; then append nodes of G — {v} in topological order. This is

valid since v has no entering edges =

To compute a topological ordering of G:

Find a node v with no incoming edges and order 1t first DAG

Delete v from G
Recursively compute a topological ordering of G—{v} .\ /

and append this order after v

53



' Topological Sorting Algorithm W e

* Theorem. Algorithm finds a topological order in O(m + n) time

- Pf.

— Maintain the following information:
e count(w) = remaining number of incoming edges
» § =set of remaining nodes with no incoming edges

— Initialization: O (m + n) via single scan through graph
— Update: to delete v
* remove v from S

* decrease count(w) for all edges from v to w; and add w to S if count(w) hits o
» thisis O(1) per edge .

* Topological-sort cannot handle graphs with cycles!

54



B FERFARFETM
=== THE HONG KONG
S u m m a ry LlAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-

* Graphs definition

* Graphs representation

e Graph search algorithms

e Connected components in directed/undirected graphs
* Tarjan’s Algorithm

* DAGs and Topological orders

55



	Slide 1: Graph Algorithms (I)
	Slide 2: Basic Definitions and Applications
	Slide 3: Definition
	Slide 4: Applications: Social Network
	Slide 5: Road Network
	Slide 6: More Applications
	Slide 7: Sequential Representation
	Slide 8: Sequential Representation
	Slide 9: Linked Representation
	Slide 10: Linked Representation
	Slide 11: Terminology
	Slide 12: Terminology
	Slide 13: Graph Traversal
	Slide 14: Connectivity
	Slide 15: Graph Traversal
	Slide 16: Depth First Search (Stack-Based)
	Slide 17: Depth First Search (Stack-Based)
	Slide 18: Depth First Search (Recursion-Based)
	Slide 19: Traversals
	Slide 20: Breadth First Search
	Slide 21: Breadth First Search
	Slide 22: Graph Connectivity
	Slide 23: Connected Component
	Slide 24: Connected Component
	Slide 25: Connectivity in Directed Graphs
	Slide 26: Directed Graph
	Slide 27: Application: Ecological Food Web
	Slide 28: More Applications
	Slide 29: Undirected V.S. Directed
	Slide 30: Sequential Representation
	Slide 31: Linked Representation
	Slide 32: Graph Search
	Slide 33: Strong Connectivity
	Slide 34: Strong Connectivity: Algorithm
	Slide 35: Strong Components
	Slide 36: Tarjan’s Algorithm: Overview
	Slide 37: Tarjan’s Algorithm: Pseudocode
	Slide 38: Tarjan’s Algorithm: An Example
	Slide 39: Tarjan’s Algorithm: An Example
	Slide 40: Tarjan’s Algorithm: An Example
	Slide 41: Tarjan’s Algorithm: An Example
	Slide 42: Tarjan’s Algorithm: An Example
	Slide 43: Tarjan’s Algorithm: An Example
	Slide 44: Tarjan’s Algorithm: An Example
	Slide 45: Tarjan’s Algorithm: An Example
	Slide 46: Tarjan’s Algorithm
	Slide 47: DAG & Topological Ordering
	Slide 48: Directed Acyclic Graphs
	Slide 49: Precedence Constraints
	Slide 50: Directed Acyclic Graphs
	Slide 51: Directed Acyclic Graphs
	Slide 52: Directed Acyclic Graphs
	Slide 53: Directed Acyclic Graphs
	Slide 54: Topological Sorting Algorithm
	Slide 55: Summary

