
DSAA 2043 | Design and Analysis of Algorithms

Graph Algorithms (I)

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

➢Basic Definitions and Applications

➢Graph Connectivity and Graph Traversal

➢Connectivity in Directed Graphs

➢DAGs & Topological Ordering

Jing Tang 2

Basic Definitions and Applications

Definition

33

• A graph: a group of vertices and edges that are used to connect
these vertices

• Definition: A graph G can be defined as an ordered set 𝐺(𝑉, 𝐸)

• 𝑉 represents the set of vertices/nodes

• 𝐸 represents the set of edges which are used to connect 𝑉

Applications: Social Network

4

Figure1.Largest Connected Subcomponent of theSocial Network in the Framingham Heart Study in theYear 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social

network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is
proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:

yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the ties
between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange

denotes a familial tie.

Road Network

5

Node = intersection; edge = street.

More Applications

6

graph node edg e

communica tion telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanica l joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond

Sequential Representation

• Use adjacency matrix to store the mapping represented by vertices
and edges

• In adjacency matrix, the rows and columns are represented by the
graph vertices

• For a graph having 𝑛 vertices, the adjacency matrix will have a
dimension 𝑛 × 𝑛

7

Sequential Representation

• Undirected: an entry 𝐴𝑖𝑗 in the adjacency matrix will be 1 if there
exists an edge between 𝑣𝑖 and 𝑣𝑗.

8

Linked Representation

• An adjacency list is used to store the Graph into the computer's
memory

• An adjacency list is maintained for each node present in the graph
which stores the node value and a pointer to the next adjacent node
to the respective node

• If all the adjacent nodes are traversed, then store the NULL in the
pointer field of last node of the list

9

Linked Representation

• Undirected: The sum of the lengths of adjacency lists is equal to
the twice of the number of edges

10

Terminology

• Path: a sequence of edges connecting initial node 𝑣0 to terminal node 𝑣𝑛

• Closed Path: A path where the initial node is same as terminal node, i.e., 𝑣0 = 𝑣𝑛

• Simple Path: all the nodes of the path are distinct, with the exception 𝑣0 = 𝑣𝑛

• Closed Simple Path: a simple path with 𝑣0 = 𝑣𝑛

• Cycle: a path which has no repeated edges or vertices except the first and last
vertices

• Adjacent Nodes: two nodes 𝑢 and 𝑣 are connected via an edge 𝑒
– the nodes 𝑢 and 𝑣 are also called as neighbors

• Degree of a Node: the number of edges that are connected with the node
– A node with degree 0 is called as isolated node

11

Terminology

• Connected Graph: a graph in which a path exists between every two vertices 𝑢
and 𝑣 in 𝑉

– There are no isolated nodes in connected graph

• Complete Graph: a graph in which there is an edge between each pair of vertices
– A complete graph contain 𝑛(𝑛 − 1)/2 edges where 𝑛 is the number of nodes in the graph

• Weighted Graph: each edge is assigned with some data such as length or weight
– The weight of an edge 𝑒, 𝑤(𝑒), must be positive indicating the cost of traversing the edge

• Digraph: each edge of the graph is associated with some direction
– The traversing can be done only in the specified direction

12

Jing Tang 13

Graph Traversal

Connectivity

• 𝑠−𝑡 connectivity problem: Given two nodes 𝑠 and 𝑡, is there a path
between 𝑠 and 𝑡?

• 𝑠−𝑡 shortest path problem: Given two nodes 𝑠 and 𝑡, what is the
length of a shortest path between 𝑠 and 𝑡?

• Applications
– Friendster

– Maze traversal

– Kevin Bacon number

– Fewest hops in a communication network

14

Graph Traversal

• Traversing the graph means examining all the nodes and vertices of
the graph

• Two standard methods to traverse graphs
– Breadth First Search

– Depth First Search

15

Depth First Search (Stack-Based)

• DFS: starts with the initial node, and then goes to deeper and deeper
until we find the goal node or the node which has no children. The
algorithm, then backtracks from the dead end towards the most
recent node that is yet to be completely unexplored.

– Step 1: SET STATUS as UNVISITED (ready state) for each node in G

• Step 2: Push the starting node A on the stack

– Step 3: Repeat Steps 4 and 5 until STACK is empty

– Step 4: Pop the top node N. If node N is VISITED, repeat Step 4; Otherwise,
process it and set its STATUS as VISITED (processed state)

– Step 5: Push on the stack all the neighbours of N with STATUS UNVISITED

– Step 6: EXIT

16

Depth First Search (Stack-Based)

• Rule 1: Push every unvisited
neighbour (if there is one) of the current
vertex on the stack

• Rule 2: If you can’t carry out Rule 1 because
there are no more unvisited vertices, pop
vertices from the stack (if possible) until a
vertex is unvisited, mark it visited, and
make it the current vertex

• Rule 3: If you can’t carry out Rule 1&2
because the stack is empty, you’re done

17

Time complexity 𝑂(𝑚 + 𝑛), with
an adjacency list

Depth First Search (Recursion-Based)

18

DFS-recursive(𝐺, 𝑠):
 mark 𝑠 as visited
 for all neighbours 𝑤 of 𝑠 in Graph 𝐺:
 if 𝑤 is not visited:
 DFS-recursive(G, w)

DFS-recursive(𝐺, 1) = [1, 2, 4, 5, 6, 𝟑, 7, 8]

Assume that we follow neighbours with smaller ID first

Time complexity 𝑂(𝑛 +𝑚), when
implemented using an adjacency list.

Traversals

Now try to implement the two DFS traversal algorithms (20 min)

19

Breadth First Search

• BFS: starts traversing the graph from root node and explores all the
neighbours. Then, it selects the nearest node and explore all the
unexplored nodes. It follows the same process for each of the nearest
node until it finds the goal.

– Step 1: SET STATUS = 1 (ready state) for each node in G

– Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)

– Step 3: Repeat Steps 4 and 5 until QUEUE is empty

– Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).

– Step 5: Enqueue all neighbours of N in the ready state (STATUS = 1) and set
their STATUS = 2

– Step 6: EXIT

20

Breadth First Search
• Rule 1: Visit the next unvisited vertex

(if there is one) that’s adjacent to the
current vertex, and insert it into the
queue

• Rule 2: If you can’t carry out Rule 1
because there are no more unvisited
vertices, remove a vertex from the
queue (if possible) and make it the
current vertex

• Rule 3: If you can’t carry out Rule 1&2
because the queue is empty, you’re
done

21

Time complexity 𝑂(𝑚 + 𝑛), when
implemented using an adjacency list

Jing Tang 22

Graph Connectivity

Connected Component

• Connected component: find all nodes reachable from 𝑠

23

Connected component containing node 1 is [1, 2, 3, 4, 5, 6, 7, 8]

Connected Component

• Connected component: find all nodes reachable from 𝑠

24

Theorem. Upon termination, 𝑅 is the connected component containing 𝑠
・BFS = explore in order of distance from 𝑠
・DFS = explore in a different way

𝑢 𝑣

𝑠

it’s safe to add 𝑣

𝑅

Jing Tang 25

Connectivity in Directed Graphs

Directed Graph

26

Notation: 𝐺 = (𝑉, 𝐸)

・Edge (𝑢, 𝑣) leaves node 𝑢 and enters node 𝑣

Ex. Web graph: hyperlink points from one web page to another

・Orientation of edges is crucial

・Modern web search engines exploit hyperlink structure to rank web

pages by importance

Application: Ecological Food Web

27

Food web graph

・Node = species

・Edge = from prey to predator

More Applications

28

directed e d g enodedirected graph

one-way streetstreet intersectiontransportation

hyperlinkweb pagewe b

predator-prey relationshipspeciesfood w eb

hypernymsynsetWordNet

precedence constrainttaskscheduling

transactionbankfinancial

placed callpersoncell phone

infectionpersoninfect ious d i se ase

legal moveboard positiong a m e

citationjournal articlecitation

pointerobjectobject graph

inherits fromclassinheritance hierarchy

jumpcode blockcontrol flow

Undirected V.S. Directed

29

• In an undirected graph, edges are not associated with the
directions with them
• If an edge exists between vertex A and B then the vertices can

be traversed from B to A as well as A to B

• In a directed graph, edges form an ordered pair
• Edges represent a specific path from some vertex A to

another vertex B
• Node A is called initial node while node B is called terminal

node

Sequential Representation

• Directed: an entry 𝐴𝑖𝑗 in the adjacency matrix will be 1 if there exists
an edge directly from 𝑣𝑖 to 𝑣𝑗

30

Linked Representation

• Directed: The sum of the lengths of adjacency lists is equal to
the number of edges

31

Graph Search

• Directed reachability: Given a node 𝑠, find all nodes reachable from 𝑠

• Directed 𝑠 ↝ 𝑡 shortest path problem: Given two nodes 𝑠 and 𝑡, what
is the length of a shortest path from 𝑠 to 𝑡?

• Graph Traversal: BFS and DFS extend naturally to directed graphs

32

coming soon!

Strong Connectivity

• Def. Nodes 𝑢 and 𝑣 are mutually reachable if there is both a path from 𝑢 to 𝑣 and
also a path from 𝑣 to 𝑢

• Def. A graph is strongly connected if every pair of nodes is mutually reachable

• Lemma. Let 𝑠 be any node. 𝐺 is strongly connected iff every node is reachable
from 𝑠, and 𝑠 is reachable from every node

33

Pf.  Follows from definition

Pf.  Path from u to v: concatenate u↝s path with s↝v path

Path from v to u: concatenate v↝s path with s↝u path

ok if paths overlap

s

v

u

Strong Connectivity: Algorithm

• Theorem. Can determine if 𝐺 is strongly connected in 𝑂(𝑚 + 𝑛) time

Pf.
– Pick any node 𝑠

– Run BFS from 𝑠 in 𝐺

– Run BFS from 𝑠 in 𝐺 reverse

– Return true iff all nodes reached in both BFS executions

– Correctness follows immediately from previous lemma

34

reverse orientation of every edge in G

Strong Components

• Def. A strong component is a maximal subset of mutually reachable
nodes

35

Theorem. [Tarjan 1972] Can find all strong components in 𝑂(𝑚 + 𝑛) time

Tarjan’s Algorithm: Overview

1. Initialization:
1. Assign a unique index to each node, initialize as undefined

2. Assign a lowlink value to each node, initialize as undefined

3. Create an empty stack to keep track of nodes in the current
search path

4. Create an empty list to store the strongly connected
components (SCCs)

2.Depth-First Search (DFS) Loop:
1. For each node 𝑣 in the graph:

1. If 𝑣 has not been visited:

1. Call the strongConnect function on 𝑣

3.strongConnect Function:

1. Set the index of 𝑣 to the current global index

2. Set the lowlink of 𝑣 to the current global index

3. Push 𝑣 onto the stack

4. Mark 𝑣 as being on the stack

5. Increment the global index

36

4. Explore Adjacent Nodes:
1. For each adjacent node 𝑢 of 𝑣:

1. If 𝑢 has not been visited:
1. Recursively call strongConnect(𝑢)
2. Update the lowlink of 𝑣 to the minimum

of 𝑣.lowlink and 𝑢.lowlink

2. If 𝑢 is on the stack:
1. Update the lowlink of 𝑣 to the minimum of

𝑣.lowlink and 𝑢.index

5. Identify SCC:
1. If the lowlink of 𝑣 is equal to its index:

1. Pop nodes from the stack until 𝑣 is popped
2. Each popped node is part of a new SCC
3. Add the popped nodes to the list of SCCs

6. Output:
1. After all nodes have been processed, the list

of SCCs contains all the strongly connected
components of the graph

Tarjan’s Algorithm: Pseudocode

37

Tarjan’s Algorithm: An Example

38

Tarjan’s Algorithm: An Example

39

Tarjan’s Algorithm: An Example

40

Tarjan’s Algorithm: An Example

41

Tarjan’s Algorithm: An Example

42

Tarjan’s Algorithm: An Example

43

Tarjan’s Algorithm: An Example

44

Tarjan’s Algorithm: An Example

45

Tarjan’s Algorithm

• Tarjan’s algorithm is a modification of the DFS traversal. Hence, the
complexity of the algorithm is linear: 𝑂(𝑛 + 𝑚)

– To achieve the mentioned complexity, we must use the adjacency list
representation of the graph

• Tarjan’s algorithm for finding strongly connected components in
directed graphs. It’s an optimal linear time algorithm

• More Tarjan’s algorithms, have a try if you are interested!

46

Jing Tang 47

DAG & Topological Ordering

Directed Acyclic Graphs

• Def. A DAG is a directed graph that contains no directed cycles

• Def. A topological order of a directed graph 𝐺 = (𝑉, 𝐸) is an ordering of its nodes
as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for every edge (𝑣𝑖 , 𝑣𝑗) we have 𝑖 < 𝑗

48

a DAG

v2 v3

v6 v5 v4

v7 v1

a topological ordering

v1 v2 v3 v4 v5 v6 v7

Precedence Constraints

• Precedence constraints. Edge (𝑣𝑖 , 𝑣𝑗) means task 𝑣𝑖 must occur
before 𝑣𝑗

• Applications
– Course prerequisite graph: course 𝑣𝑖 must be taken before 𝑣𝑗
– Compilation: module 𝑣𝑖 must be compiled before 𝑣𝑗
– Pipeline of computing jobs: output of job 𝑣𝑖 needed to determine input of job
𝑣𝑗

49

Directed Acyclic Graphs

50

Lemma. If 𝐺 has a topological order, then 𝐺 is a DAG

Pf. [by contradiction]
• Suppose that 𝐺 has a topological order 𝑣1, 𝑣2, … , 𝑣𝑛 and that 𝐺 also has a directed

cycle 𝐶
• Let 𝑣𝑖 be the lowest-indexed node in 𝐶, and let 𝑣𝑗 be the node just before 𝑣𝑖; thus
(𝑣𝑗 , 𝑣𝑖) is an edge

• By our choice of 𝑖, we have 𝑖 < 𝑗
• On the other hand, since (𝑣𝑗 , 𝑣𝑖) is an edge and 𝑣1, 𝑣2, … , 𝑣𝑛 is a topological order,

we must have 𝑗 < 𝑖, a contradiction

v1 vi vj vn

the s u p p os ed topological order: v1, …, vn

the directed cycle C

Directed Acyclic Graphs

Lemma. If 𝐺 has a topological order, then 𝐺 is a DAG

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

51

Directed Acyclic Graphs

52

Lemma. If 𝐺 is a DAG, then 𝐺 has a node with no entering edges

Pf. [by contradiction]
• Suppose that 𝐺 is a DAG and every node has at least one entering edge
• Pick any node 𝑣, and begin following edges backward from 𝑣. Since 𝑣 has at least one

entering edge (𝑢, 𝑣) we can walk backward to 𝑢
• Then, since 𝑢 has at least one entering edge (𝑥, 𝑢), we can walk backward to 𝑥
• Repeat until we visit a node, say 𝑤, twice
• Let 𝐶 denote the sequence of nodes encountered between successive visits to 𝑤. 𝐶 is a

cycle

w x u v

Directed Acyclic Graphs

53

Lemma. If G is a DAG, then G has a topological ordering

Pf. [by induction on 𝑛]

• Base case: true if 𝑛 = 1

• Given DAG on 𝑛 > 1 nodes, find a node 𝑣 with no entering edges

• 𝐺 − {𝑣} is a DAG, since deleting 𝑣 cannot create cycles

• By inductive hypothesis, 𝐺 − {𝑣} has a topological ordering

• Place 𝑣 first in topological ordering; then append nodes of 𝐺 − {𝑣} in topological order. This is

valid since 𝑣 has no entering edges

DAG

v

Topological Sorting Algorithm

• Theorem. Algorithm finds a topological order in 𝑂(𝑚 + 𝑛) time

• Pf.
– Maintain the following information:

• count(𝑤) = remaining number of incoming edges

• 𝑆 = set of remaining nodes with no incoming edges

– Initialization: 𝑂(𝑚 + 𝑛) via single scan through graph

– Update: to delete 𝑣
• remove 𝑣 from 𝑆

• decrease count(𝑤) for all edges from 𝑣 to 𝑤; and add 𝑤 to 𝑆 if count(𝑤) hits 0

• this is O(1) per edge

• Topological-sort cannot handle graphs with cycles!

54

Summary

• Graphs definition

• Graphs representation

• Graph search algorithms

• Connected components in directed/undirected graphs

• Tarjan’s Algorithm

• DAGs and Topological orders

55

	Slide 1: Graph Algorithms (I)
	Slide 2: Basic Definitions and Applications
	Slide 3: Definition
	Slide 4: Applications: Social Network
	Slide 5: Road Network
	Slide 6: More Applications
	Slide 7: Sequential Representation
	Slide 8: Sequential Representation
	Slide 9: Linked Representation
	Slide 10: Linked Representation
	Slide 11: Terminology
	Slide 12: Terminology
	Slide 13: Graph Traversal
	Slide 14: Connectivity
	Slide 15: Graph Traversal
	Slide 16: Depth First Search (Stack-Based)
	Slide 17: Depth First Search (Stack-Based)
	Slide 18: Depth First Search (Recursion-Based)
	Slide 19: Traversals
	Slide 20: Breadth First Search
	Slide 21: Breadth First Search
	Slide 22: Graph Connectivity
	Slide 23: Connected Component
	Slide 24: Connected Component
	Slide 25: Connectivity in Directed Graphs
	Slide 26: Directed Graph
	Slide 27: Application: Ecological Food Web
	Slide 28: More Applications
	Slide 29: Undirected V.S. Directed
	Slide 30: Sequential Representation
	Slide 31: Linked Representation
	Slide 32: Graph Search
	Slide 33: Strong Connectivity
	Slide 34: Strong Connectivity: Algorithm
	Slide 35: Strong Components
	Slide 36: Tarjan’s Algorithm: Overview
	Slide 37: Tarjan’s Algorithm: Pseudocode
	Slide 38: Tarjan’s Algorithm: An Example
	Slide 39: Tarjan’s Algorithm: An Example
	Slide 40: Tarjan’s Algorithm: An Example
	Slide 41: Tarjan’s Algorithm: An Example
	Slide 42: Tarjan’s Algorithm: An Example
	Slide 43: Tarjan’s Algorithm: An Example
	Slide 44: Tarjan’s Algorithm: An Example
	Slide 45: Tarjan’s Algorithm: An Example
	Slide 46: Tarjan’s Algorithm
	Slide 47: DAG & Topological Ordering
	Slide 48: Directed Acyclic Graphs
	Slide 49: Precedence Constraints
	Slide 50: Directed Acyclic Graphs
	Slide 51: Directed Acyclic Graphs
	Slide 52: Directed Acyclic Graphs
	Slide 53: Directed Acyclic Graphs
	Slide 54: Topological Sorting Algorithm
	Slide 55: Summary

