
DSAA 2043 | Design and Analysis of Algorithms

Graph Algorithms (II)

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

➢Single Source Shortest Path
– Dijkstra’s algorithm

– Bellman-Ford algorithm

➢All-pairs shortest paths
– Floyd-Warshall algorithm

Jing Tang 2

Single source shortest paths

Consider a digraph G = (V, E) with edge-weight function w :
E → R.

The weight of path p = v1 → v2 → … → vk is defined tobe

w(p) =w(vi ,vi+1) .
i=1

Example:

Paths in graphs.

3

k−1

v1

v2

v3

v4

v54 –2 –5 1

w(p) = –2

Paths in graphs.

4

A shortest path from u to v is a path of minimum weight
from u to v.
The shortest-path weight from u to v is defined as:

(u, v) = min{w(p) : p is a path from u to v}.

Note: (u, v) =  if no path from u to v exists.

Well-definedness of shortest paths

5

If a graph G contains a negative-weight cycle, then some
shortest paths do not exist.

Example:

u v

…

< 0

Optimal substructure

6

Theorem. A subpath of a shortest path is a shortest
path.

Proof. Cut and paste:

Triangle inequality

7

Theorem. For all u, v, x  V, we have

(u, v)  (u, x) + (x, v).

Proof.

x

u v
(u, v)

(u, x) (x, v)

Problem. Assume that w(u, v)  0 for all (u, v) E. (Hence, all

shortest-path weights must exist.) From a given source vertex s

 V, find the shortest-path weights (s, v) for all v  V.

IDEA: Greedy.

1. Maintain a set S of vertices whose shortest-path distances

from s are known.

2. At each step, add to S the vertex v  V – S.

whose distance estimate from s is minimum.

3. Update the distance estimates of vertices adjacent to v.

Single-source shortest paths

8

d[s]  0
for each v  V – {s}

do d[v] 

S 
Q  V ⊳ Q is a priority queue maintaining V – S,

keyed on d[v]

Dijkstra’s algorithm

9

d[s]  0
for each v  V – {s}

do d[v] 

S 
Q  V ⊳ Q is a priority queue maintaining V – S,

keyed on d[v]
while Q 

do u  EXTRACT-MIN(Q)
S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Dijkstra’s algorithm

10

d[s]  0
for each v  V – {s}

do d[v] 

S 
Q  V ⊳ Q is a priority queue maintaining V – S,

keyed on d[v]

relaxation
step

Implicit DECREASE-KEY

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Dijkstra’s algorithm

11

A

D

C E

10

3

1 4 7 9
8

B
2

2

Dijkstra can only handle

graphs with nonnegative

edge weights:

Try to think why?

Example of Dijkstra’s algorithm

12

A

B
10

3

1 4 7 9
8

2

Initialize:

Q: A B C D E

0    

S: {}

0


2

C



E





D

Example of Dijkstra’s algorithm

13

A

B

3

1 4 7 9
8

2Q: A B C D E

0    

S: { A }

0


2

C



E





D
“A”  EXTRACT-MIN(Q):

10

Example of Dijkstra’s algorithm

14

A

B

3

1 4 7 9
8

2Q: A B C D E

0    

S: { A }

0

10
2

C

3

E





D
Relax all edges leaving A:

10

10   

Example of Dijkstra’s algorithm

15

A

B

3

1 4 7 9
8

2Q: A B C D E

0    

S: { A, C }

0

10
2

C

3

E





D
“C”  EXTRACT-MIN(Q):

10

10   

Example of Dijkstra’s algorithm

16

A

B D
10

3

1 4 7 9
8

2Q: A B C D E

0    

S: { A, C }

0

7

C

3

E

5

11
2Relax all edges leaving C:

10   

7 11 5

Example of Dijkstra’s algorithm

17

A

B D
10

3

1 4 7 9
8

2Q: A B C D E

0    

S: { A, C, E }

0

7

C

3

E

5

11
2

5

“E”  EXTRACT-MIN(Q):

10   

7 11

Example of Dijkstra’s algorithm

18

A

B D
10

3

1 4 7 9
8

2Q: A B C D E

0    

S: { A, C, E }

0

7

C

3

E

5

11
2

5

10   

7 11

7 11

Relax all edges leaving E:

Example of Dijkstra’s algorithm

19

A

B D
10

3

1 4 7 9
8

2Q: A B C D E

0    

S: { A, C, E, B }

0

7

C

3

E

5

11
2

5

7

10   

7 11

11

“B”  EXTRACT-MIN(Q):

Example of Dijkstra’s algorithm

20

A

3

1 4 7 9
8

2

2Q: A B C D E

0    

S: { A, C, E, B }

0

7

B

C

3

E

5

9

D

5

7

Relax all edges leaving B:

10

10   

7 11

11

9

Example of Dijkstra’s algorithm

21

A

3

1 4 7 9
8

2

2Q: A B C D E

0    

S: { A, C, E, B, D }

0

7

B

C

3

E

5

9

D

5

7

10   

7 11

11

9

“D”  EXTRACT-MIN(Q):

10

Example of Dijkstra’s algorithm

22

Lemma. Initializing d[s]  0 and d[v]  for all v  V –{s}
establishes d[v]  (s, v) for all v  V, and this invariant is
maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which d[v]
< (s, v), and let u be the vertex that caused d[v] to change:
d[v] = d[u] + w(u, v). Then,

d[v] < (s,v)

 (s, u) + (u, v)

 (s,u) + w(u, v)

 d[u] + w(u, v)

Contradiction.

supposition

triangle inequality

sh. path  specific path

v is first violation

Correctness — Part I

23

Lemma. Let u be v's predecessor on a shortest path from s to v.
Then, if d[u] = (s, u) and edge (u, v) is relaxed, we have d[v] = (s, v)
after the relaxation.

Proof.

Observe that (s, v) = (s, u) + w(u, v). Suppose that d[v] > (s, v)
before the relaxation. (Otherwise, we’re done.) Then, the test d[v] >
d[u] + w(u, v) succeeds, because d[v] > (s, v) = (s, u) + w(u, v) =
d[u] + w(u, v), and the algorithm sets d[v] = d[u] + w(u, v) = (s, v).

Correctness — Part II

24

s
x y

Theorem. Dijkstra’s algorithm terminates with d[v] = (s, v) for

all v  V.

Proof. It suffices to show that d[v] = (s, v) for every v  V

when v is added to S. Suppose u is the first vertex added to S for

which d[u]  (s, u). Let y be the first vertex in V – S along a

shortest path from s to u, and let x be its predecessor:

S, just before

adding u.

u

Correctness — Part III

25

Since u is the first vertex violating the claimed invariant, we have
d[x] = (s, x).

When x was added to S, the edge (x, y) was relaxed, which
implies that d[y] = (s, y)  (s, u)  d[u]. But, d[u]  d[y] by our
choice of u.

Contradiction.

s
x y

uS

Correctness — Part III (continued)

26

|V |

times

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Analysis of Dijkstra

27

degree(u)
times

|V |

times

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v]  d[u] + w(u, v)

Analysis of Dijkstra

28

degree(u)
times

|V |

times

Handshaking Lemma  (E) implicit DECREASE-KEY’s.

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v]  d[u] + w(u, v)

Analysis of Dijkstra

29

degree(u)
times

|V |

times

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v]  d[u] + w(u, v)

Handshaking Lemma  (|E|) implicit DECREASE-KEY’s.

(|V|·TEXTRACT-MIN +|E|·TDECREASE-KEY)

Note: Same formula as in the analysis of Prim’s minimum

spanning tree algorithm.

Analysis of Dijkstra

30

Time = (|V|)·TEXTRACT-MIN +(|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(|V|) O(1) O(|V|2)

Analysis of Dijkstra (continued)

31

Time = (|V|)·TEXTRACT-MIN +(|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array

binary
heap

O(|V|) O(1) O(|V|2)

O(lg|V|) O(lg|V|) O(|E|lg|V|)

Analysis of Dijkstra (continued)

32

Time = (|V|)·TEXTRACT-MIN +(|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

O(|V|) O(1) O(|V|2)array

binary
heap

Fibonacci
heap

O(lg|V|)

O(lg|V|)
amortized

O(lg|V|)

O(1)

amortized

O(|E|lg| V|)

O(|E| + |V| lg |V|)

worst case

Analysis of Dijkstra (continued)

33

Suppose that w(u, v) = 1 for all (u, v)  E. Can Dijkstra’s

algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Unweighted graphs

34

Breadth-first search

while Q 
do u  DEQUEUE(Q)

for each v  Adj[u]
do if d[v] = 

then d[v]  d[u] + 1
ENQUEUE(Q, v)

Suppose that w(u, v) = 1 for all (u, v)  E. Can Dijkstra’s

algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Analysis: Time = O(|V| + |E|).

Unweighted graphs

35

a. f h

d

b. g

e i

c

Q:

Example of breadth-first search

36

a. f h

d

b. g

e i

0

c

0

Q: a

Example of breadth-first search

37

Example of breadth-first search

38

a. f h

d

b. g

e i

a0

c

1 1

Q: a b d

1

c

b g

i

0

1

a 1 f h

d

2

e

2

1 2 2

Q: a b d c e

Example of breadth-first search

39

c

b g

i

0

L17.51

1

a 1 f h

d

2

e

2

2 2

Q: a b d c e

Example of breadth-first search

40

c

b g

i

0

1

a 1 f h

d

2

e

2

2

Q: a b d c e

Example of breadth-first search

41

b

c

g

a f h0

1

1

d

2

e

2

3

i

3

3 3

Q: a b d c e g i

Example of breadth-first search

42

b

c

g

a f h0

1

1

d

2

e

2

3

i

3

4

3 4

Q: a b d c e g i f

Example of breadth-first search

43

a

b

c

g

0

1

1

d

2

e

2

3

i

3

4

f

4

h

4 4

Q: a b d c e g i f h

Example of breadth-first search

44

a

b

c

g

0

1

1

d

2

e

2

3

i

3

4

f

4

h

4

Q: a b d c e g i f h

Example of breadth-first search

45

a

b

c

g

Q: a b d c e g i f h

0

1

1

d

2

e

2

3

i

3

4

f

4

h

Example of breadth-first search

46

a

b

c

g

Q: a b d c e g i f h

0

1

1

d

2

e

2

3

i

3

4

f

4

h

Example of breadth-first search

47

while Q 
do u  DEQUEUE(Q)

for each v  Adj[u]
do if d[v] = 

then d[v]  d[u] + 1
ENQUEUE(Q, v)

Key idea:

The FIFO Q in breadth-first search mimics the priority

queue Q in Dijkstra.

• Invariant: v comes after u in Q implies that d[v] = d[u] or

d[v] = d[u] + 1.

Correctness of BFS

48

Jing Tang 49

Bellman-Ford algorithm

Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.

– Can be useful if you want to say that some edges are actively good to take,
rather than costly.

– Can be useful as a building block in other algorithms.

50

Basic idea:
Instead of picking the u with the smallest d[u] to update, just update all of
the u’s simultaneously.

Bellman-Ford algorithm

51

• While there are not-sure nodes:
• Pick the not-sure node u with the smallest estimate d[u].
• For v in u.neighbors:

• d[v] ← min(d[v], d[u] + edgeWeight(u,v))
• Mark u as sure.

Compare to Dijkstra:

Bellman-Ford(G,s):

Instead of picking u cleverly,
just update for all of the u’s.

• d[v] = ∞ for all v in V

• d[s] = 0
• For i=0,…,|V|-1:

• For u in V:
• For v in u.neighbors:

• d[v] ← min(d[v], d[u] + edgeWeight(u,v))

Bellman-Ford algorithm

• We are actually going to change this to be less smart.

• Keep n arrays: d(0), d(1), …, d(n-1)

52

• d(i)[v] = ∞ for all v in V, for all i=0,…,|V|-1

• d(0)[s] = 0

• For i=0,…,|V|-2:

• For u in V:

• For v in u.neighbors:

• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

• Then dist(s,v) = d(n-1)[v]

Bellman-Ford*(G,s):

Slightly different than the original
Bellman-Ford algorithm, but the

analysis is basically the same.

Bellman-Ford

53

Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How far is a node from Gates?

0

∞

∞

∞

∞

Start with the same graph, no
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞0 ∞ ∞ ∞

Gates Packard CS161 Union Dish

d(0)

d(1)

d(2)

d(3)

d(4)

Bellman-Ford

54

Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How far is a node from Gates?

0

∞

∞

25

1

Start with the same graph, no
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞

Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

d(2)

d(3)

d(4)

Bellman-Ford

55

Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How far is a node from Gates?

0

2

45

23

1

Start with the same graph, no
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞

Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

d(3)

d(4)

Bellman-Ford

56

Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How far is a node from Gates?

0

2

6

23

1

Start with the same graph, no
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞

Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

d(4)

Bellman-Ford

57

Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How far is a node from Gates?

0

2

6

23

1

Start with the same graph, no
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞

Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

These are the final distances!

Bellman-Ford

• Does it work?
– Yes

– Idea to the right.

• Is it fast?
– Not really…

58

∞

25

0 ∞ ∞ ∞

Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

Inductive Hypothesis:
d(i)[v] is equal to the cost of the shortest path between s and v with at
most i edges.
Conclusion:
d(|V|-1)[v] is equal to the cost of the shortest simple path between s and
v. (Since all simple paths have at most |V|-1 edges).

0 1 2 6 23d(4)

A simple path is a path with no cycles.

Proof by induction

59

• Inductive Hypothesis:
• After iteration i, for each v, d(i)[v] is equal to the cost of

the shortest path between s and v with at most i edges.

• Base case:
• After iteration 0…

• Inductive step:

Inductive step

60

• Suppose the inductive hypothesis holds for i.

• We want to establish it for i+1.

v

u

s

Let u be the vertex right
before v in this path.Say this is the shortest path between

s and v of with at most i+1 edges:

at most i edges

• By induction, d(i)[u] is the cost of a shortest path between s and u of i edges.
• By setup, d(i)[u] + w(u,v) is the cost of a shortest path between s and v of i+1 edges.
• In the i+1’st iteration, we ensure d(i+1)[v] <= d(i)[u] + w(u,v).
• So d(i+1)[v] <= cost of shortest path between s and v with i+1 edges.
• But d(i+1)[v] = cost of a particular path of at most i+1 edges >= cost of shortest path.
• So d[v] = cost of shortest path with at most i+1 edges.

Hypothesis: After iteration i,
for each v, d(i) [v] is equal to
the cost of the shortest path
between s and v with at
most i edges.

Pros and cons of Bellman-Ford

• Running time: O(|V||E|) running time

– For each of |V| steps we update m edges

– Slower than Dijkstra

• However, it’s also more flexible in a few ways.

– Can handle negative edges

– If we constantly do these iterations, any changes in the network will
eventually propagate through.

61

Negative edge weights?

• What is the shortest path from Gates to the Union?

• Shortest paths aren’t defined if there are negative cycles!

• B-F works with negative edge weights…as long as there are
not negative cycles.

– A negative cycle is a path with the same start and end
vertex whose cost is negative.

• However, B-F can detect negative cycles.

62

Gates

Unio
n

Dish

Packar
d

1

1

4

-3

10

-2

CS16
1

Cost: −∞

How Bellman-Ford deals with negative cycles

• If there are no negative cycles:

– Everything works as it should.

– The algorithm stabilizes after |V|-1 rounds.

– Note: Negative edges are okay!!

• If there are negative cycles:

– Not everything works as it should…

• it couldn’t possibly work, since shortest paths aren’t well-defined if there are negative
cycles.

– The d[v] values will keep changing.

• Solution:

– Go one round more and see if things change.

• If so, return NEGATIVE CYCLE 

63

Summary

• The Bellman-Ford algorithm:

– Finds shortest paths in weighted graphs with negative edge weights

– runs in time O(|V||E|) on a graph G with n vertices and m edges.

• If there are no negative cycles in G:

– the BF algorithm terminates with d(|V|-1)[v] = d(s,v).

• If there are negative cycles in G:
– the BF algorithm returns negative cycle.

64

Bellman-Ford is also used in practice.

• eg, Routing Information Protocol (RIP) uses something like Bellman-
Ford.

– Older protocol, not used as much anymore.

65

• Each router keeps a table of distances to
every other router.

• Periodically we do a Bellman-Ford update.

• This means that if there are changes in the
network, this will propagate. (maybe slowly…)

Destination Cost to get there Send to whom?

172.16.1.0 34 172.16.1.1

10.20.40.1 10 192.168.1.2

10.155.120.1 9 10.13.50.0

Jing Tang 66

All-pairs shortest paths

Input: Digraph G = (V, E), where V = {1,2,…, n}, with edge-weight

function w : E → R.

Output: n  n matrix of shortest-path lengths (i, j) for all i, j  V.

IDEA:

• Run Bellman-Ford once from each vertex.

All-pairs shortest paths

67

Bellman-Ford algorithm

68

• d(0)[v] = ∞ for all v in V

• d(0)[s] = 0

• For i=0,…,n-1:

• For v in V:

• d(i+1)[v] ← min(d(i)[v] , minu in v.inNeighbors {d
(i)[u] + w(u,v)})

• If d(n-1) != d(n) :

• Return NEGATIVE CYCLE 

• Otherwise, dist(s,v) = d(n-1)[v]

Bellman-Ford*(G,s):

Running time: O(mn)

Bellman-Ford is also an example of…
Dynamic Programming!

Input: Digraph G = (V, E), where V = {1,2,…, n}, with edge-weight

function w : E → R.

Output: n  n matrix of shortest-path lengths (i, j) for all i, j  V.

IDEA:

• Run Bellman-Ford once from each vertex.

• Time = O(V 2E).

• Dense graph ((n2) edges) (n4) time in the worst case.

Good first try! Can we use DP to solve it？

All-pairs shortest paths

69

Optimal substructure

70

k-1

2

…

1

3

k
k+1

u

v

n

Label the vertices 1,2,…,n
(We omit some edges in the

picture below – meant to be a
cartoon, not an example).

Let D(k-1)[u,v] be the solution
to Sub-problem(k-1).

This is the shortest
path from u to v

through the blue set.
It has cost D(k-1)[u,v]

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest path from
u to v, so that all the internal vertices on that path are
in {1,…,k-1}.

Question: How can we find D(k)[u,v] using D(k-1)?

How can we find D(k)[u,v] using D(k-1)?

71

k-1

2

…

1

3

k
k+1

u

v

n

D(k)[u,v] is the cost of the
shortest path from u to v so
that all internal vertices on
that path are in {1, …, k}.

How can we find D(k)[u,v] using D(k-1)?

72

k-1

2

…

1

3

k
k+1

u

v

n

Case 1: we don’t
need vertex k.

D(k)[u,v] = D(k-1)[u,v]

D(k)[u,v] is the cost of the
shortest path from u to v so
that all internal vertices on
that path are in {1, …, k}.

How can we find D(k)[u,v] using D(k-1)?

73

k-1

2

…

1

3

k
k+1

u

v

n

Case 2: we need
vertex k.

D(k)[u,v] is the cost of the
shortest path from u to v so
that all internal vertices on
that path are in {1, …, k}.

Case 2 continued

74

k-1

2

…

1

3

k

u
v

n

• Suppose there are no negative
cycles.
• Then WLOG the shortest path from

u to v through {1,…,k} is simple.

• If that path passes through k, it
must look like this:

• This path is the shortest path
from u to k through {1,…,k-1}.
• sub-paths of shortest paths are

shortest paths

• Similarly for this path.

Case 2: we need
vertex k.

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v]

How can we find D(k)[u,v] using D(k-1)?

75

k-1

2

…

1

3

k

u
v

Case 2: we need vertex k.

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v]

k-1

2

…

1

3

k

u
v

Case 1: we don’t need vertex k.

D(k)[u,v] = D(k-1)[u,v]

How can we find D(k)[u,v] using D(k-1)?

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Optimal substructure:
– We can solve the big problem using solutions to smaller problems.

• Overlapping sub-problems:
– D(k-1)[k,v] can be used to help compute D(k)[u,v] for lots of different u’s.

76

Case 1: Cost of
shortest path

through {1,…,k-1}

Case 2: Cost of shortest path
from u to k and then from k to v

through {1,…,k-1}

How can we find D(k)[u,v] using D(k-1)?

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Using our Dynamic programming paradigm, this immediately gives us
an algorithm!

77

Case 1: Cost of
shortest path

through {1,…,k-1}

Case 2: Cost of shortest path
from u to k and then from k to v

through {1,…,k-1}

Floyd-Warshall algorithm

• Initialize n-by-n arrays D(k) for k = 0,…,n
– D(k)[u,u] = 0 for all u, for all k

– D(k)[u,v] = ∞ for all u ≠ v, for all k

– D(0)[u,v] = weight(u,v) for all (u,v) in E.

• For k = 1, …, n:
– For pairs u,v in V2:

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Return D(n)

78

The base case checks out:
the only path through zero
other vertices are edges
directly from u to v.

This is a bottom-up Dynamic programming algorithm.

We’ve basically just shown

• Theorem:
If there are no negative cycles in a weighted directed graph G, then the Floyd-
Warshall algorithm, running on G, returns a matrix D(n) so that:

D(n)[u,v] = distance between u and v in G.

• Running time: O(n3)
– Better than running Bellman-Ford n times!

• Storage:
– Need to store two n-by-n arrays, and the original graph.

79

Work out the
details of a proof!

As with Bellman-Ford, we don’t really need to store all n of the D(k).

What if there are negative cycles?

• Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
– “Negative cycle” means that there’s some v so that there is a path from v to v

that has cost < 0.

– Aka, D(n)[v,v] < 0.

• Algorithm:
– Run Floyd-Warshall as before.

– If there is some v so that D(n)[v,v] < 0:

• return negative cycle.

80

Single-source shortest paths

• Nonnegative edge weights

Dijkstra’s algorithm: O(|E| + |V| lg|V|)

• General

Bellman-Ford algorithm: O(|V||E|)

All-pairs shortest paths

• Nonnegative edge weights

Dijkstra’s algorithm |V| times: O(|V||E| + |V|2 lg| V|)

• General

Floyd-Warshall algorithms: (|V|3).

Summary: Shortest Path Problems and Algorithms

81

	Slide 1: Graph Algorithms (II)
	Slide 2: Single source shortest paths
	Slide 3: Paths in graphs.
	Slide 4: Paths in graphs.
	Slide 5: Well-definedness of shortest paths
	Slide 6: Optimal substructure
	Slide 7: Triangle inequality
	Slide 8: Single-source shortest paths
	Slide 9: Dijkstra’s algorithm
	Slide 10: Dijkstra’s algorithm
	Slide 11: Dijkstra’s algorithm
	Slide 12: Example of Dijkstra’s algorithm
	Slide 13: Example of Dijkstra’s algorithm
	Slide 14: Example of Dijkstra’s algorithm
	Slide 15: Example of Dijkstra’s algorithm
	Slide 16: Example of Dijkstra’s algorithm
	Slide 17: Example of Dijkstra’s algorithm
	Slide 18: Example of Dijkstra’s algorithm
	Slide 19: Example of Dijkstra’s algorithm
	Slide 20: Example of Dijkstra’s algorithm
	Slide 21: Example of Dijkstra’s algorithm
	Slide 22: Example of Dijkstra’s algorithm
	Slide 23: Correctness — Part I
	Slide 24: Correctness — Part II
	Slide 25: Correctness — Part III
	Slide 26: Correctness — Part III (continued)
	Slide 27: Analysis of Dijkstra
	Slide 28: Analysis of Dijkstra
	Slide 29: Analysis of Dijkstra
	Slide 30: Analysis of Dijkstra
	Slide 31: Analysis of Dijkstra (continued)
	Slide 32: Analysis of Dijkstra (continued)
	Slide 33: Analysis of Dijkstra (continued)
	Slide 34: Unweighted graphs
	Slide 35: Unweighted graphs
	Slide 36: Example of breadth-first search
	Slide 37: Example of breadth-first search
	Slide 38: Example of breadth-first search
	Slide 39: Example of breadth-first search
	Slide 40: Example of breadth-first search
	Slide 41: Example of breadth-first search
	Slide 42: Example of breadth-first search
	Slide 43: Example of breadth-first search
	Slide 44: Example of breadth-first search
	Slide 45: Example of breadth-first search
	Slide 46: Example of breadth-first search
	Slide 47: Example of breadth-first search
	Slide 48: Correctness of BFS
	Slide 49: Bellman-Ford algorithm
	Slide 50: Bellman-Ford algorithm
	Slide 51: Bellman-Ford algorithm
	Slide 52: Bellman-Ford algorithm
	Slide 53: Bellman-Ford
	Slide 54: Bellman-Ford
	Slide 55: Bellman-Ford
	Slide 56: Bellman-Ford
	Slide 57: Bellman-Ford
	Slide 58: Bellman-Ford
	Slide 59: Proof by induction
	Slide 60: Inductive step
	Slide 61: Pros and cons of Bellman-Ford
	Slide 62: Negative edge weights?
	Slide 63: How Bellman-Ford deals with negative cycles
	Slide 64: Summary
	Slide 65: Bellman-Ford is also used in practice.
	Slide 66: All-pairs shortest paths
	Slide 67: All-pairs shortest paths
	Slide 68: Bellman-Ford algorithm
	Slide 69: All-pairs shortest paths
	Slide 70: Optimal substructure
	Slide 71: How can we find D(k)[u,v] using D(k-1)?
	Slide 72: How can we find D(k)[u,v] using D(k-1)?
	Slide 73: How can we find D(k)[u,v] using D(k-1)?
	Slide 74: Case 2 continued
	Slide 75: How can we find D(k)[u,v] using D(k-1)?
	Slide 76: How can we find D(k)[u,v] using D(k-1)?
	Slide 77: How can we find D(k)[u,v] using D(k-1)?
	Slide 78: Floyd-Warshall algorithm
	Slide 79: We’ve basically just shown
	Slide 80: What if there are negative cycles?
	Slide 81: Summary: Shortest Path Problems and Algorithms

