EEREXRZ (M)

DSAA 2043 | Design and Analysis of Algorithms I

TECHNOLOGY GUANGZHOU}

Graph Algorithms (I1)

» Single Source Shortest Path
— Dijkstra’s algorithm
— Bellman-Ford algorithm

» All-pairs shortest paths
— Floyd-Warshall algorithm

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

B FEHBRZ (M
3 THE HONG KONG
umj UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

Single source shortest paths

B FEBREBERZ (M

: O ook

Pat h S I n g ra p h S [] LAJ TECHNOLOGY (GUANGZHOU)
n

Consider a digraph G = (V, E) with edge-weight function w :
E—->R.
The weight of pathp =v, —> v, — ... — v, is defined tobe

k—1
w(p) =D w(vi,vie1).
=1

Example:

@ 4 2 @ 5 I @
w(p)2

B FERFARFETM

h ° h T'- THE HONG KONG NCE AND
Paths in graphs. W v orscence e
|

A shortest path from u to v is a path of minimum weight
from u to v.
The shortest-path weight from u to v is defined as:

O(u, v) =min{w(p) : p 1s a path from u to v}.

Note: o(u, v) = oo if no path from u to v exists.

B FERFARFETM
- Well-definedness of shortest paths W v orscence e
|

If a graph G contains a negative-weight cycle, then some
shortest paths do not exist.

Example:

- Optimal substructure

Theorem. A subpath of a shortest path is a shortest
path.

Proof. Cutand paste:

If v; on optimal path from v, to v,: §(vg, v) = 8(vo, v;) + 8(vj, vn).

If the sub-path v; to v; is not optimal, then by finding a shorter path
from v; to v; we can strictly improve the original path.

BEEMBERZ (M)

mr THE HONG KONG

W

UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

B FEHBEREZ (M
; le i li U0 weesiv oF science ano
Trla ng e Inequa Ity A TECHNOLOGY (GUANGZHOU)
-~

Theorem. Forallu, v, x € V, we have
O(u, v) < o(u, x) + o(x, v).
Proof. 5(u, v)

If u not on shortest path from sto t: §(s,t) < 6(s,u) + 6 (u, t).
u is on shortest path from s to t iff 6(s,t) = §(s,u) + §(u, t).

- Single-source shortest paths

B FEREARE(M

¥ THE HONG KONG
tlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

Problem. Assume that w(u, v) > 0 for all («, v)e E. (Hence, all
shortest-path weights must exist.) From a given source vertex s

e V, find the shortest-path weights o(s, v) forallv € V.

IDEA: Greedy.

1. Maintain a set S of vertices whose shortest-path distances

from s are known.

At each step, add to S the vertex v € I"—§.

whose distance estimate from s is minimum.

Update the distance estimates of vertices adjacent to v.

@ BAmLE
Dijkstra’s algorithm W e o somes.n

d[s] < O
for eachv € V' — {s}
do d[v] « ©
S«
Q« TV = () 1s a priority queue maintaining) — S,
keyed on d[v]

B FEHBEREZ (M
Diikstra’s aleorith) S e e
ijkstra’s algorithm W SRS
-

d[s] < 0
for eachv € V' — {s}
do d[v] « ©
S«
Q« TV = () 1s a priority queue maintaining) — S,
keyed on d[v]
while O =
do 1 < EXTRACT-MIN(Q)
S« SuU{u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, v)
then d[v]| < d|u] + w(u, v)

10

B FEHBEREZ (M
Diikstra’s aleorith) S e e
ijkstra’s algorithm W SRS
-

d[s] < 0
for eachv € V— {5}
do d[v] <
S«
O« V o> () 1s a priority queue maintaining / — S,
keyed on d[v]
while O =
do 1 < EXTRACT-MIN(Q)
S« S {u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, v) relaxation
then d[v] < d[u] + w(u, v) step

\ Implicit DECREASE-KEY
11

Example of Dijkstra’s algorithm W s orscmee e
n

Dijkstra can only handle
graphs with nonnegative

edge weights:

Try to think why?

12

[;=

% %ﬂﬁt—?—él")‘l‘l)
Example of Dijkstra’s algorithm [wesrcnscmer e
-

Initialize:

13

' Example of Dijkstra’s algorithm W0 S rseme e
(19 y» 0
A" «— EXTRACT-MIN(QO): e 7 @

14

' Example of Dijkstra’s algorithm

Relax all edges leaving A4:

B FEREARE(M

15

[;=

% %ﬂﬁt—?—él")‘l‘l)
Example of Dijkstra’s algorithm [wesrcnscmer e
-

“C” < EXTRACT-MIN(QO): 7
[:!

16

' Example of Dijkstra’s algorithm

Relax all edges leaving C:

0
O: 1 B (' D E
0 oo o o o
10 3 o o
7 11 5

B FEREARE(M

17

[;=

% %ﬂﬁt—?—él")‘l‘l)
Example of Dijkstra’s algorithm [wesrcnscmer e
-

{9 NPl ° 7
E” < EXTRACT-MIN(Q): e 7

S:{A CE}

18

[;=

% %ﬂﬁt—?—él")‘l‘l)
Example of Dijkstra’s algorithm [wesrcnscmer e
-

Relax all edges leaving E:

O: B (D
0 o o o
10 3 o o
7 5
7 S: {A, C, E}

19

[;=

% %ﬂﬁt—?—él")‘l‘l)
Example of Dijkstra’s algorithm [wesrcnscmer e
-

“B” < EXTRACT-MIN(Q):

QO D
0 o o o
10 3 o o
7 11 5
7 11 S: {A, C, E,B}

20

[;=

' Example of Dijkstra’s algorithm (s %W;M)
N 7
Relax all edges leaving B: e o) @

0 D I
0 oo o o o 3 5
10 3 o o
7 11 5
7 11 S {A, C, E,B}

21

' Example of Dijkstra’s algorithm "E"J .

ooe (G NG O)
-~

[;=

“D” «— EXTRACT-MIN(Q):

0 oo o o o 5
10 3 o o
7 11 5
7 1 S:{A4, C E B D}
9

22

Correctness — Part | R et
-~

Lemma. Initializing d[s] <— 0 and d[v] <— o forall v € V' —{s}
establishes d|v] > o(s, v) for all v € V/, and this invariant is
maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which d[v]

<0(s, v), and let u be the vertex that caused d|v] to change:
d[v] =d[u] + w(u, v). Then,

d[v] <o(s,v) supposition
< o(s, u) +0o(u,v) triangle inequality
< o(s,u) *w(u,v) sh. path < specific path
<d[u] +w(u, v) v is first violation

Contradiction.

23

@ ERHmAL(H)
Correctness — Part |l U unveesm or scince ano

Lemma. Let u be Vs predecessor on a shortest path from s to v.
Then, if d[u] = o(s, u) and edge (u, v) is relaxed, we have d[v]| = o(s, v)
after the relaxation.

Proof.

Observe that o(s, v) = o(s, u) + w(u, v). Suppose that d[v] > o(s, v)
before the relaxation. (Otherwise, we’re done.) Then, the test d[v] >
d[u] +w(u, v) succeeds, because d[v] > o(s, v) = o(s, u) + w(u, v) =
d[u] +w(u, v), and the algorithm sets d[v]| = d[u]| + w(u, v) = o(s, v).

24

- Correctness — Part Il

Theorem. Dijkstra’s algorithm terminates with d[v] = o(s, v) for
allv e V.

Proof. It suffices to show that d[v] = o(s, v) for everyv € I/

when v is added to S. Suppose u is the first vertex added to S for
which d|u] > o(s, u). Let y be the first vertexin J/— S along a
shortest path from s to 1, and let x be its predecessor:

S, just before

adding u.

B FEREARE(M

0 THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

25

- Correctness — Part lll (continued)

B FEREARE(M

0 THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~

Since u is the first vertex violating the claimed invariant, we have
d[x] = o(s, x).

When x was added to S, the edge (x, v) was relaxed, which
implies that d[y] = o(s, y) < o(s, u) < d[u]. But, d[u] < d[y] by our
choice of u.

Contradiction.

26

% %ﬂﬁtq—él")‘l‘l)
Analysis of Dijkstra J Shmirierscme v
-

Ul v
. while O =
do © < EXTRACT-MIN(Q)
times< for each v € Adj[u]
do if d[v] > d[u] + w(u, v)
\ then d|v]| < d[u] + w(u, v)

27

% %ﬂﬁtq—él")‘l‘l)
Analysis of Dijkstra J Shmirierscme v
-

U o
. while O =
do 1 < EXTRACT-MIN(Q)
: " for each v € Adj[u
times degree(u) ,]
times = do if d[v] > d|u] + w(u, v)
N _ then d[v] < d[u] + w(u, v)

28

(@ RN)
[] e
Analysis of Dijkstra W s orscmee e
n

- while O =0
do u < EXTRACT-MIN(O)
|W< S« S {u}
| " for each v € Adj[u]
times degree(u)) do if d[v] > d[u] + w(u, v)
times then d|v] < dlu] + w(u, v)

\ \ /

Handshaking Lemma = ©(£) implicit DECREASE-KEY’s.

29

(@ RN)
[] e
Analysis of Dijkstra W s orscmee e
n

. while O =
do © < EXTRACT-MIN(Q)
: " for each v € Adj[u]
times degr ee(u) J do if d[v]| > d[u] + w(u, v)
times then d[v] < d[u] + w(u, v)

N ~]
Handshaking Lemma = ©(|E|) implicit DECREASE-KEY’s.

®(| VI 1 EXTRACT-MIN +|E | -1 DECREASE—KEY)

Note: Same formula as in the analysis of Prim’s minimum
spanning tree algorithm.
30

- Analysis of Dijkstra (continued)

Time = O(|V]) TexrractMmy T OUED TDecrEASE-KEY

QO TgxmractMiN IDecreaseKey — Total

array (14) O(1) O(|V]?)

B FEREARE(M

31

(@ EERHLE (M)
Analysis of Dijkstra (continued) WU mssmor scmnce e
|

Time = O(|V]) TexrractMn T OUED TDecrEASE-KEY

O TgxmractMiN IDecreaseKey — Total

array o/(14) O(1) O(|V]?)
Ty o(gV) o(gh) O(ENgh)

32

(@ EERHLE (M)
Analysis of Dijkstra (continued) WU mssmor scmnce e
|

Time = O(|V]) TexrractMmn T OUED TDecrEASE-KEY

0 TextractMIN I DecrEASE-KEY — Total

array (14, O(1) O(|V1?)

Ty Ogh) Ol O(ENgh)
Fibonacci O(lg|V]) O(1) O(E| + [V 1g|V)

heap amortized amortized worst case

33

& FEHBZAZ (M
Unweighted h U B S
n w e I g te g ra p S A TECHNOLOGY (GUANGZHQOU)

-~

Suppose that w(u, v) =1 for all (1, v) € E. Can Dijkstra’s
algorithm be improved?

e Use a simple FIFO queue instead of a priority queue.

34

B FERFARFETM
Unweighted h U0 B S e
n w e I g te g ra p S A TECHNOLOGY (GUANGZHOU)

-~

Suppose that w(u, v) =1 for all (1, v) € E. Can Dijkstra’s
algorithm be improved?

e Use a simple FIFO queue instead of a priority queue.

Breadth-first search

while O =0
do © <~ DEQUEUE(Q)
for each v € Adj[u]
do if d[v] =
then d[v] < d[u] + 1
ENQUEUE(Q, v)
Analysis: Time = O(|V| + |E]).

35

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

36

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

37

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

38

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

39

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

L17.51 40

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

41

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

42

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

43

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

44

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

45

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

46

(@ BERELR
Example of breadth-first search W sessmsrscmcsans
n

47

@ Emm s ()
Correctness of BFS B unaversir or scince ane
|

while O =
do 1 < DEQUEUE(Q)
for each v € Adj[u]
do if d[v] =
then d[v] < d[u] + 1
ENQUEUE(Q, v)
Key idea:
The FIFO O in breadth-first search mimics the priority

queue O in Dijkstra.
* Invariant: v comes after u in O implies that d[v] = d[u] or
dlv] =d[u] + 1.

48

B FERBEAE (M

Bellman-Ford algorithm

49

(@ BERELR
Bellman-Ford algorithm W sessmsrscmcsans
n

* (-) Slower than Dijkstra’s algorithm

* (+) Can handle negative edge weights.

Basic idea:
Instead of picking the u with the smallest d[u] to update, just update all of
the u’s simultaneously.

50

' Bellman-Ford algorithm

Bellman-Ford(G,s):

B FERFARFETM
w7 THE HONG KONG
LlAJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)
-~
* d[V] = O forallvinV
e d[s]=0

* Fori=0,...,|V|-1:

Instead of picking u cleverly,
* ForuinV:

just update for all of the u’s.

* For vin u.neighbors:

Compare to Dijkstra:
* While there are

nodes:
e Pick the

node u with the smallest estimate d[u].
* For vin u.neighbors:

e Mark u as sure.

51

B FERFARFETM
Il d aleorith U v S saence s
Bellman-Ford algorithm W s orscmee e
-~

* We are actually going to change this to be less smart.

* Keep narrays:d®, d®%, ..., din1)

Bellman-Ford*(G,s):
e di[v]=oo forall vinV, for all i=0,...,|V|-1
e dO¢] =
d [S] 0 Slightly different than the original

* Fori=0,...,|V|-2: Bellman-Ford algorithm, but the
analysis is basically the same.

* ForuinV:

* For vin u.neighbors:
(i+1) (i) (i+1) (i)

* Then dist(s,v) = d™1[v]

52

B FEHBEREZ (M
= THE HONG KONG

Bellman-Ford B unaversir or scince ane
|

Start with the same graph, no
negative weights. n
OO
i ? _
How faris a node from Gates? =O >
Gates Packard CS161 Union Dish 1 u
do © o] CeFo

i

1

RIE) | | m
) &
20

d

i

d@

4

|

25
* Fori=0,...,|V|-2:

* ForuinV:
* Forvinu.neighbors: E

(i+1) (i) (i+1) (i)

53

B FEHBEREZ (M
= THE HONG KONG

Bellman-Ford B unaversir or scince ane
|

Start with the same graph, no
negative weights. n
OO
i ? _
How faris a node from Gates? =O >

Gates Packard CS161 Union Dish 1 u
do © o] CeFo
ol B :

o
o [T T T 1] ‘

25

* Fori=0,...,|V|-2:
* ForuinV:

* Forvinu.neighbors:
(i+1) (i) (i+1) (i)

0

54

B FEHBEREZ (M
T THE HONG KONG

Bellman-Ford B unaversir or scince ane
|

Start with the same graph, no
negative weights. n
OO
i ? _
How faris a node from Gates? =O >

Gates Packard CS161 Union Dish 1 -
do © o] CeFo

[T w - :

o] ws]a]
:
o T T T 17

oo T T T 11 7 G

25

N

20
* Fori=0,...,|V|-2:
* ForuinV:

* Forvinu.neighbors:
(i+1) (i) (i+1) (i)

0

55

Bellman-Ford

How faris a node from Gates?
Gates Packard CS161 Union Dish

oo =foleTe]
72 i N I I
il e]=]

d(3)|0|1|2|6|23|

ao[T T T T 1

* Fori=0,...,|V|-2:
* ForuinV:

* Forvinu.neighbors:
(i+1) (i)

negative weights.

OO

Start with the same graph, no I

(i+1)

O

)

N

1

1

1 4

e

25

0

o

W

EERERAZE (M)

THE HONG KONG
UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

56

Bellman-Ford

Start with the same graph, no

negative weights.

How faris a node from Gates?
Gates Packard CS161 Union Dish

do[oo [oToTe]
difofi o]
d@[o1]>]a|a]
do [0 e T2e]=]
do[o] 1]2]e]2]

These are the final distances!

* Fori=0,...,|V|-2:
* ForuinV:

* Forvinu.neighbors:
(i+1) (i) (i+1) (i)

OO
O

)

1

1

N

Packard

1

25

4

e

0

EERERAZE (M)
UNIVERSITY OF SCIENCE AND

w THE HONG KONG

TECHNOLOGY (GUANGZHOU)
-~

57

B FEHBEREZ (M
= THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

Bellman-Ford

Gates Packard CS161 Union Dish
o]e]wle]x]

===}
o]z =]=]
[T [=]

e Does it work?

e |s it fast?

Inductive Hypothesis:
d[v] is equal to the cost of the shortest path between s and v with at

most i edges.

Conclusion:
d(IVI-l[v] is equal to the cost of the shortest simple path between s and

v. (Since all simple paths have at most |V|-1 edges).

58

@ EEREALTH

L] L]

Proof by induction W sessmsrscmcsans
n

* After iteration i, for each v, d)[v] is equal to the cost of
the shortest path between s and v with at most i edges.

« After iteration O... /

59

B FERFARFETM
I n u ct Ive Ste p A TECHNOLOGY (GUANGZHOU)

* Suppose the inductive hypothesis holds for i. After iteration |,

for each v, d) [v] is equal to
* We want to establish it for i+1. the cost of the shortest path

between s and v with at
most i edges.

Let u be the vertex right
before v in this path.

W
@90)

at most i edges

60

& mRREA (M)
Pros and cons of Bellman-Ford B unaversir or scince ane
|

* Running time: O(|V]|E|) running time
— For each of | V| steps we update m edges
— Slower than Dijkstra

* However, it’s also more flexible in a few ways.
— Can handle negative edges

— If we constantly do these iterations, any changes in the network will
eventually propagate through

61

B FERFARFETM
' Negative edge weights? W sessmsrscmcsans
n

What is the shortest path from Gates to the Union?

Shortest paths aren’t defined if there are negative cycles!

B-F works with negative edge weights...as long as there are
not negative cycles.

However, B-F can detect negative cycles.

62

B FERFARFETM
' How Bellman-Ford deals with negative cycles W s orscmee e
n

* If there are no negative cycles:

— Note: Negative edges are okay!!

* If there are negative cycles:

 Solution:
— Go one round more and see if things change.
* |f so, return NEGATIVE CYCLE ®

63

B FEHBEREZ (M

UL Sriversiry o science avo

S U m m a ry LA TECHNOLOGY (GUANGZHOU)
-~

* The Bellman-Ford algorithm:
* If there are no negative cycles in G:

* |f there are negative cycles in G:
negative cycle.

64

Bellman-Ford is also used in practice.

LlAJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

e eg, Routing Information Protocol (RIP) uses something like Bellman-
Ford.

. Destination Cost to get there Send to whom?
e Each router keeps a table of distances to
every other router.

172.16.1.0 34 172.16.1.1
* Periodically we do a Bellman-Ford update. 10.2040.1 10 192.168.1.2
. . . 10.155.120.1 9 10.13.50.0

* This means that if there are changes in the

network, this will propagate. (maybe siowly...)

65

B FERBEAE (M

All-pairs shortest paths

66

- All-pairs shortest paths 0 s e
-~

Input: Digraph G = (V, E), where '={1,2,..., n}, with edge-weight
functionw : F — R.
Output: # x n matrix of shortest-path lengths o(z, j) forall i, j € V.

IDEA:

e Run Bellman-Ford once from each vertex.

' Bellman-Ford algorithm 0 s e

Bellman-Ford*(G,s):
e d9v]=o0 forallvinV
dO[s] =0
For i=0,...,n-1:
* ForvinV:

o Ifdim)1=dm;
e Return NEGATIVE CYCLE ®

Otherwise, dist(s,v) = d™1[v]

Bellman-Ford is also an example of...
Dynamic Programming! Running time: O(mn)

68

- All-pairs shortest paths 0 s e
-~

Input: Digraph G = (V, E), where '={1,2,..., n}, with edge-weight
functionw : F — R.
Output: # x n matrix of shortest-path lengths o(z, j) forall i, j € V.

IDEA:
e Run Bellman-Ford once from each vertex.
e Time = O(V2E).

e Dense graph (O(n?) edges) = O(n*) time in the worst case.

Good first try! Can we use DP to solve it 7

' Optimal substructure Wi i

Label the vertices 1,2,...,n
f (We omit some edges in the
Our DP algorithm will picture below — meant to be a
fill in the cartoon, not an example).

n-by-n arrays
p© pW, ..., D
Let D1[u,v] be the solution iteratively and then
to Sub-problem(k-1). we’ll be done.

Question: How can we find D)[u,v] using D{k-1)?

u 1
\V;

This is the shortest

path fromutov
through the blue set.
It has cost D«<1)[u,v]

70

' How can we find D[u,v] using Dk-1)? W S

D[u,v] is the cost of the
shortest path from u to v so

that all internal vertices on
V@,,. that path arein {1, ..., k}.
/C@
S{ ‘

71

' How can we find D™[u,v] using D{k-1)?

Case 1: we don'’t
need vertex k.

B FEHBEREZ (M
= THE HONG KONG

U oz or scence o
|
D[u,v] is the cost of the
shortest path fromutovso
that all internal vertices on

that path arein {1, ..., k}.

72

' How can we find D™[u,v] using D{k-1)?

Case 2: we need
vertex k.

B FEHBEREZ (M
= THE HONG KONG

LlAJJ UNIVERSITY OF SCIENCE AND

TECHNOLOGY (GUANGZHOU)
-~

D[u,v] is the cost of the
shortest path from u to v so
that all internal vertices on
that path arein {1, ..., k}.

73

B FEHBEREZ (M
T THE HONG KONG
UNIVERSITY OF SCIENCE AND

LlAJJ TECHNOLOGY (GUANGZHOU)
-~

' Case 2 continued
Case 2: we need
vertex k.

e Suppose there are no negative

cycles.

»

If that path passes through k, it

must look like this:

* This path is the shortest path
from u to k through {1,...,k-1}. @

D&[u,v] = D[y k] + DIk v]

e Similarly for this path.

' How can we find D[u,v] using Dk-1)? W S

Case 1: we don’t need vertex k. Case 2: we need vertex k.

DM[u,v] = D"Y[u,v] DM[u,v] = D*Y[u,k] + D[k, v]
75

' How can we find D[u,v] using Dk-1)? W S

e DM[u,v] = min{ D% Y[u v], D&y k] + D[k, v] }

Case 1: Cost of Case 2: Cost of shortest path
shortest path from u to k and then from ktov
through {1,...,k-1} through {1,...,k-1}

* Optimal substructure:

e Overlapping sub-problems:

76

o

Uo

EERERAZE (M)
THE HONG KONG
UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

' How can we find D™[u,v] using D{k-1)?

e DM[u,v] = min{ D% Y[u v], D&y k] + D[k, v] }

Case 1: Cost of
shortest path
through {1,...,k-1}

Case 2: Cost of shortest path
from u to k and then from k to v
through {1,...,k-1}

e Using our Dynamic programming paradigm, this immediately gives us
an algorithm!

77

' Floyd-Warshall algorithm W s

* Initialize n-by-n arrays D for k =0, ...,n

*Fork=1, ..., n:
— For pairs u,v in V2
e DWu,v] = min{ D% Y[u,v], D[y k] + D[k,v] }

e Return D"

This is a bottom-up Dynamic programming algorithm.

78

' We’ve basically just shown W s

e Theorem:

If there are no negative cycles in a weighted directed graph G, then the Floyd-
Warshall algorithm, running on G, returns a matrix D" so that

D(M[u,v] = distance between u and vin G.

. . . 3
* Running time: O(n>) Work outthe G
— Better than running Bellman-Ford n times! details of a proof! @
* Storage:

— Need to store two n-by-n arrays, and the original graph.

79

' What if there are negative cycles? W e

* Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:

* Algorithm:

80

B FERFARFETM
' Summary: Shortest Path Problems and Algorithms W e o somes.n
n

Single-source shortest paths

* Nonnegative edge weights

Dijkstra’s algorithm: O(|E| + | V| Ig|V])
e General

¥ Bellman-Ford algorithm: O(|V||E)|)

All-pairs shortest paths

e Nonnegative edge weights

¥ Dijkstra’s algorithm | V| times: O(|V]|E| + |V]% 1g|V])
e General

¥ Floyd-Warshall algorithms: O(|V]3).

31

	Slide 1: Graph Algorithms (II)
	Slide 2: Single source shortest paths
	Slide 3: Paths in graphs.
	Slide 4: Paths in graphs.
	Slide 5: Well-definedness of shortest paths
	Slide 6: Optimal substructure
	Slide 7: Triangle inequality
	Slide 8: Single-source shortest paths
	Slide 9: Dijkstra’s algorithm
	Slide 10: Dijkstra’s algorithm
	Slide 11: Dijkstra’s algorithm
	Slide 12: Example of Dijkstra’s algorithm
	Slide 13: Example of Dijkstra’s algorithm
	Slide 14: Example of Dijkstra’s algorithm
	Slide 15: Example of Dijkstra’s algorithm
	Slide 16: Example of Dijkstra’s algorithm
	Slide 17: Example of Dijkstra’s algorithm
	Slide 18: Example of Dijkstra’s algorithm
	Slide 19: Example of Dijkstra’s algorithm
	Slide 20: Example of Dijkstra’s algorithm
	Slide 21: Example of Dijkstra’s algorithm
	Slide 22: Example of Dijkstra’s algorithm
	Slide 23: Correctness — Part I
	Slide 24: Correctness — Part II
	Slide 25: Correctness — Part III
	Slide 26: Correctness — Part III (continued)
	Slide 27: Analysis of Dijkstra
	Slide 28: Analysis of Dijkstra
	Slide 29: Analysis of Dijkstra
	Slide 30: Analysis of Dijkstra
	Slide 31: Analysis of Dijkstra (continued)
	Slide 32: Analysis of Dijkstra (continued)
	Slide 33: Analysis of Dijkstra (continued)
	Slide 34: Unweighted graphs
	Slide 35: Unweighted graphs
	Slide 36: Example of breadth-first search
	Slide 37: Example of breadth-first search
	Slide 38: Example of breadth-first search
	Slide 39: Example of breadth-first search
	Slide 40: Example of breadth-first search
	Slide 41: Example of breadth-first search
	Slide 42: Example of breadth-first search
	Slide 43: Example of breadth-first search
	Slide 44: Example of breadth-first search
	Slide 45: Example of breadth-first search
	Slide 46: Example of breadth-first search
	Slide 47: Example of breadth-first search
	Slide 48: Correctness of BFS
	Slide 49: Bellman-Ford algorithm
	Slide 50: Bellman-Ford algorithm
	Slide 51: Bellman-Ford algorithm
	Slide 52: Bellman-Ford algorithm
	Slide 53: Bellman-Ford
	Slide 54: Bellman-Ford
	Slide 55: Bellman-Ford
	Slide 56: Bellman-Ford
	Slide 57: Bellman-Ford
	Slide 58: Bellman-Ford
	Slide 59: Proof by induction
	Slide 60: Inductive step
	Slide 61: Pros and cons of Bellman-Ford
	Slide 62: Negative edge weights?
	Slide 63: How Bellman-Ford deals with negative cycles
	Slide 64: Summary
	Slide 65: Bellman-Ford is also used in practice.
	Slide 66: All-pairs shortest paths
	Slide 67: All-pairs shortest paths
	Slide 68: Bellman-Ford algorithm
	Slide 69: All-pairs shortest paths
	Slide 70: Optimal substructure
	Slide 71: How can we find D(k)[u,v] using D(k-1)?
	Slide 72: How can we find D(k)[u,v] using D(k-1)?
	Slide 73: How can we find D(k)[u,v] using D(k-1)?
	Slide 74: Case 2 continued
	Slide 75: How can we find D(k)[u,v] using D(k-1)?
	Slide 76: How can we find D(k)[u,v] using D(k-1)?
	Slide 77: How can we find D(k)[u,v] using D(k-1)?
	Slide 78: Floyd-Warshall algorithm
	Slide 79: We’ve basically just shown
	Slide 80: What if there are negative cycles?
	Slide 81: Summary: Shortest Path Problems and Algorithms

