
DSAA 2043 | Design and Analysis of Algorithms

Graph Algorithms (II)

Yanlin Zhang & Wei Wang | DSAA 2043 Spring 2025

➢Single Source Shortest Path 
– Dijkstra’s algorithm

– Bellman-Ford algorithm

➢All-pairs shortest paths
– Floyd-Warshall algorithm
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Single source shortest paths



Consider a digraph G = (V, E) with edge-weight function w : 
E → R.

The weight of path p = v1 → v2 → … → vk is defined tobe

w( p) =w(vi ,vi+1) .
i=1

Example:

Paths in graphs.
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Paths in graphs.
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A shortest path from u to v is a path of minimum weight 
from u to v.
The shortest-path weight from u to v is defined as:

(u, v) = min{w(p) : p is a path from u to v}.

Note: (u, v) =  if no path from u to v exists.



Well-definedness of shortest paths
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If a graph G contains a negative-weight cycle,  then some 
shortest paths do not exist.

Example:

u v

…

< 0



Optimal substructure

6

Theorem. A subpath of a shortest path is a shortest
path.

Proof. Cut and paste:



Triangle inequality
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Theorem. For all u, v, x  V, we have

(u, v)  (u, x) + (x, v).

Proof.

x

u v
(u, v)

(u, x) (x, v)



Problem. Assume that w(u, v)  0 for all (u, v) E. (Hence, all 

shortest-path weights must exist.) From a given source vertex s 

 V, find the shortest-path weights (s, v) for all v  V.

IDEA: Greedy.

1. Maintain a set S of vertices whose shortest-path distances 

from s are known.

2. At each step, add to S the vertex v  V – S.

whose distance estimate from s is minimum.

3. Update the distance estimates of vertices adjacent to v.

Single-source shortest paths
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d[s]  0
for each v  V – {s}

do d[v] 

S 
Q  V ⊳ Q is a priority queue maintaining V – S,  

keyed on d[v]

Dijkstra’s algorithm
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d[s]  0
for each v  V – {s}

do d[v] 

S 
Q  V ⊳ Q is a priority queue maintaining V – S,  

keyed on d[v]
while Q 

do u  EXTRACT-MIN(Q)
S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Dijkstra’s algorithm
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d[s]  0
for each v  V – {s}

do d[v] 

S 
Q  V ⊳ Q is a priority queue maintaining V – S,  

keyed on d[v]

relaxation  
step

Implicit DECREASE-KEY

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Dijkstra’s algorithm
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Dijkstra can only handle 

graphs with nonnegative  

edge weights:

Try to think why?

Example of Dijkstra’s algorithm
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Initialize:

Q: A B C D E

0    

S: {}

0


2

C



E





D

Example of Dijkstra’s algorithm
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S: { A }

0


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E





D
“A”  EXTRACT-MIN(Q):

10

Example of Dijkstra’s algorithm
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S: { A }
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Relax all edges leaving A:

10

10   

Example of Dijkstra’s algorithm
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A

B
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2Q: A B C D E

0    

S: { A, C }
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



D
“C”  EXTRACT-MIN(Q):

10

10   

Example of Dijkstra’s algorithm
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2Q: A B C D E

0    

S: { A, C }

0

7

C

3

E

5

11
2Relax all edges leaving C:

10   

7 11 5

Example of Dijkstra’s algorithm
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2Q: A B C D E

0    

S: { A, C, E }

0

7

C

3

E

5

11
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“E”  EXTRACT-MIN(Q):

10   

7 11

Example of Dijkstra’s algorithm
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0    

S: { A, C, E }
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7 11

7 11

Relax all edges leaving E:

Example of Dijkstra’s algorithm
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A

B D
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1 4 7 9
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2Q: A B C D E

0    

S: { A, C, E, B }

0
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7 11

11

“B”  EXTRACT-MIN(Q):

Example of Dijkstra’s algorithm
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A

3
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8
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2Q: A B C D E

0    

S: { A, C, E, B }

0
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Relax all edges leaving B:

10

10   

7 11

11

9

Example of Dijkstra’s algorithm
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A

3

1 4 7 9
8

2

2Q: A B C D E

0    

S: { A, C, E, B, D }

0

7

B
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3

E

5

9

D

5

7

10   

7 11

11

9

“D”  EXTRACT-MIN(Q):

10

Example of Dijkstra’s algorithm
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Lemma. Initializing d[s]  0 and d[v]  for all  v  V –{s}
establishes d[v]  (s, v) for all v  V, and this invariant is 
maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which d[v] 
< (s, v), and let u be the vertex that caused d[v] to change: 
d[v] = d[u] + w(u, v). Then,

d[v] < (s,v)

 (s, u) + (u, v)

 (s,u) + w(u, v)

 d[u] + w(u, v)

Contradiction.

supposition 

triangle inequality

sh. path  specific path

v is first violation

Correctness — Part I
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Lemma. Let u be v's predecessor on a shortest path from s to v. 
Then, if d[u] = (s, u) and edge (u, v) is relaxed, we have d[v] = (s, v) 
after the relaxation.

Proof. 

Observe that (s, v) = (s, u) + w(u, v). Suppose that d[v] > (s, v)
before the relaxation. (Otherwise, we’re done.) Then, the test d[v] >  
d[u] + w(u, v) succeeds, because d[v] > (s, v) = (s, u) + w(u, v) = 
d[u] + w(u, v), and the algorithm sets d[v] = d[u] + w(u, v) = (s, v).

Correctness — Part II
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s
x y

Theorem. Dijkstra’s algorithm terminates with d[v] = (s, v) for 

all v  V.

Proof. It suffices to show that d[v] = (s, v) for every v  V 

when v is added to S. Suppose u is the first vertex added to S for 

which d[u]  (s, u). Let y be the first vertex in V – S along a 

shortest path from s to u, and let x be its predecessor:

S, just before  

adding u.

u

Correctness — Part III
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Since u is the first vertex violating the claimed  invariant, we have 
d[x] = (s, x).

When x was added to S, the edge (x, y) was relaxed, which  
implies that d[y] = (s, y)  (s, u)  d[u]. But, d[u]  d[y] by our 
choice of u.

Contradiction.

s
x y

uS

Correctness — Part III  (continued)
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|V |

times

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Analysis of Dijkstra

27



degree(u)  
times

|V |

times

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v]  d[u] + w(u, v)

Analysis of Dijkstra
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degree(u)  
times

|V |

times

Handshaking Lemma  (E) implicit DECREASE-KEY’s.

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v]  d[u] + w(u, v)

Analysis of Dijkstra
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degree(u)  
times

|V |

times

while Q 
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v]  d[u] + w(u, v)

Handshaking Lemma  (|E|) implicit DECREASE-KEY’s.

(|V|·TEXTRACT-MIN +|E|·TDECREASE-KEY)

Note: Same formula as in the analysis of Prim’s minimum 

spanning tree algorithm.

Analysis of Dijkstra
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Time = (|V|)·TEXTRACT-MIN +(|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(|V|) O(1) O(|V|2)

Analysis of Dijkstra  (continued)
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Time = (|V|)·TEXTRACT-MIN +(|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array

binary  
heap

O(|V|) O(1) O(|V|2)

O(lg|V|) O(lg|V|) O(|E|lg|V|)

Analysis of Dijkstra  (continued)
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Time = (|V|)·TEXTRACT-MIN +(|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

O(|V|) O(1) O(|V|2)array

binary  
heap

Fibonacci  
heap

O(lg|V|)

O(lg|V|)  
amortized

O(lg|V|)

O(1)

amortized

O(|E|lg| V|)

O(|E| + |V| lg |V|)

worst case

Analysis of Dijkstra  (continued)
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Suppose that w(u, v) = 1 for all (u, v)  E.  Can Dijkstra’s 

algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Unweighted graphs

34



Breadth-first search

while Q 
do u  DEQUEUE(Q)

for each v  Adj[u]
do if d[v] = 

then d[v]  d[u] + 1  
ENQUEUE(Q, v)

Suppose that w(u, v) = 1 for all (u, v)  E.  Can Dijkstra’s 

algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Analysis: Time = O(|V| + |E|).

Unweighted graphs
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a. f h

d

b. g

e i

c

Q:

Example of breadth-first search
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a. f h

d

b. g

e i

0

c

0

Q: a

Example of breadth-first search
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Example of breadth-first search
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a. f h

d

b. g

e i

a0

c

1 1

Q: a b d

1



c

b g

i
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a 1 f h  

d

2

e

2

1 2 2

Q: a b d c e

Example of breadth-first search
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c

b g

i
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L17.51
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Q: a b d c e

Example of breadth-first search
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a 1 f h  
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e

2

2

Q: a b d c e

Example of breadth-first search
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Q: a b d c e g i

Example of breadth-first search
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Q: a b d c e g i f

Example of breadth-first search
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Example of breadth-first search
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Example of breadth-first search
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Example of breadth-first search
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Q: a b d c e g i f h
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Example of breadth-first search
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while Q 
do u  DEQUEUE(Q)

for each v  Adj[u]
do if d[v] = 

then d[v]  d[u] + 1  
ENQUEUE(Q, v)

Key idea:

The FIFO Q in breadth-first search mimics the priority 

queue Q in Dijkstra.

• Invariant: v comes after u in Q implies that d[v] = d[u] or 

d[v] = d[u] + 1.

Correctness of BFS

48
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Bellman-Ford algorithm



Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.

– Can be useful if you want to say that some edges are actively good to take, 
rather than costly.

– Can be useful as a building block in other algorithms.

50

Basic idea:
Instead of picking the u with the smallest d[u] to update, just update all of 
the u’s simultaneously.



Bellman-Ford algorithm

51

• While there are not-sure nodes:
• Pick the not-sure node u with the smallest estimate d[u].
• For v in u.neighbors:

• d[v] ← min(d[v], d[u] + edgeWeight(u,v))
• Mark u as sure.

Compare to Dijkstra:

Bellman-Ford(G,s):

Instead of picking u cleverly, 
just update for all of the u’s.

• d[v] = ∞ for all v in V

• d[s] = 0
• For i=0,…,|V|-1:

• For u in V:
• For v in u.neighbors:

• d[v] ← min(d[v], d[u] + edgeWeight(u,v))



Bellman-Ford algorithm

• We are actually going to change this to be less smart.

• Keep n arrays: d(0), d(1), …, d(n-1)

52

• d(i)[v] = ∞ for all v in V, for all i=0,…,|V|-1

• d(0)[s] = 0

• For i=0,…,|V|-2:

• For u in V:

• For v in u.neighbors:

• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

• Then dist(s,v) = d(n-1)[v]

Bellman-Ford*(G,s):

Slightly different than the original 
Bellman-Ford algorithm, but the 

analysis is basically the same.



Bellman-Ford
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Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How far is a node from Gates?

0

∞

∞

∞

∞

Start with the same graph, no 
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞0 ∞ ∞ ∞

Gates  Packard CS161 Union  Dish      

d(0)

d(1)

d(2)

d(3)

d(4)



Bellman-Ford
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Union

Dish

Packard

1

1

4

25

20

22

CS161

How far is a node from Gates?

0

∞

∞

25

1

Start with the same graph, no 
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞

Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

d(2)

d(3)

d(4)



Bellman-Ford
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How far is a node from Gates?

0

2

45
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Start with the same graph, no 
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞

Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

d(3)

d(4)



Bellman-Ford
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How far is a node from Gates?

0

2

6
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1

Start with the same graph, no 
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞

Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

d(4)



Bellman-Ford
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Packard
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How far is a node from Gates?

0

2
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Start with the same graph, no 
negative weights.

=

• For i=0,…,|V|-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ← min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞

Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

These are the final distances!



Bellman-Ford

• Does it work?
– Yes

– Idea to the right.

• Is it fast?
– Not really…

58

∞

25

0 ∞ ∞ ∞

Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

Inductive Hypothesis:
d(i)[v] is equal to the cost of the shortest path between s and v with at 
most i edges.
Conclusion:
d(|V|-1)[v] is equal to the cost of the shortest simple path between s and 
v.  (Since all simple paths have at most |V|-1 edges).

0 1 2 6 23d(4)

A simple path is a path with no cycles.



Proof by induction

59

• Inductive Hypothesis:
• After iteration i, for each v, d(i)[v] is equal to the cost of 

the shortest path between s and v with at most i edges.

• Base case:
• After iteration 0…

• Inductive step:



Inductive step

60

• Suppose the inductive hypothesis holds for i.

• We want to establish it for i+1.

v

u

s

Let u be the vertex right 
before v in this path.Say this is the shortest path between 

s and v of with at most i+1 edges:

at most i edges

• By induction, d(i)[u] is the cost of a shortest path between s and u of i edges.
• By setup, d(i)[u] + w(u,v) is the cost of a shortest path between s and v of i+1 edges. 
• In the i+1’st iteration, we ensure d(i+1)[v] <= d(i)[u] + w(u,v).
• So d(i+1)[v] <= cost of shortest path between s and v with i+1 edges.
• But d(i+1)[v] = cost of a particular path of at most i+1 edges >= cost of shortest path.
• So d[v] = cost of shortest path with at most i+1 edges.

Hypothesis: After iteration i, 
for each v, d(i) [v] is equal to 
the cost of the shortest path 
between s and v with at 
most i edges.



Pros and cons of Bellman-Ford

• Running time: O(|V||E|) running time

– For each of |V| steps we update m edges

– Slower than Dijkstra

• However, it’s also more flexible in a few ways.

– Can handle negative edges

– If we constantly do these iterations, any changes in the network will 
eventually propagate through.  

61



Negative edge weights?

• What is the shortest path from Gates to the Union?

• Shortest paths aren’t defined if there are negative cycles!

• B-F works with negative edge weights…as long as there are 
not negative cycles.

– A negative cycle is a path with the same start and end 
vertex whose cost is negative.

• However, B-F can detect negative cycles.

62

Gates

Unio
n

Dish

Packar
d

1

1

4

-3

10

-2

CS16
1

Cost: −∞



How Bellman-Ford deals with negative cycles

• If there are no negative cycles: 

– Everything works as it should.

– The algorithm stabilizes after |V|-1 rounds.

– Note: Negative edges are okay!!

• If there are negative cycles: 

– Not everything works as it should…

• it couldn’t possibly work, since shortest paths aren’t well-defined if there are negative 
cycles.

– The d[v] values will keep changing.

• Solution:

– Go one round more and see if things change.

• If so, return NEGATIVE CYCLE 

63



Summary

• The Bellman-Ford algorithm: 

– Finds shortest paths in weighted graphs with negative edge weights

– runs in time O(|V||E|) on a graph G with n vertices and m edges. 

• If there are no negative cycles in G:

– the BF algorithm terminates with d(|V|-1)[v] = d(s,v).

• If there are negative cycles in G: 
– the BF algorithm returns negative cycle.
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Bellman-Ford is also used in practice.

• eg, Routing Information Protocol (RIP) uses something like Bellman-
Ford.

– Older protocol, not used as much anymore.

65

• Each router keeps a table of distances to 
every other router.

• Periodically we do a Bellman-Ford update.

• This means that if there are changes in the 
network, this will propagate. (maybe slowly…)

Destination Cost to get there Send to whom?

172.16.1.0 34 172.16.1.1

10.20.40.1 10 192.168.1.2

10.155.120.1 9 10.13.50.0
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All-pairs shortest paths



Input: Digraph G = (V, E), where V = {1,2,…, n}, with edge-weight 

function w : E → R.

Output: n  n matrix of shortest-path lengths (i, j) for all i, j  V.

IDEA:

• Run Bellman-Ford once from each vertex.

All-pairs shortest paths
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Bellman-Ford algorithm
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• d(0)[v] = ∞ for all v in V

• d(0)[s] = 0

• For i=0,…,n-1:

• For v in V:

• d(i+1)[v] ← min( d(i)[v] , minu in v.inNeighbors {d
(i)[u] + w(u,v)} )

• If d(n-1) != d(n) :

• Return NEGATIVE CYCLE 

• Otherwise, dist(s,v) = d(n-1)[v]

Bellman-Ford*(G,s):

Running time: O(mn)

Bellman-Ford is also an example of…
Dynamic Programming!



Input: Digraph G = (V, E), where V = {1,2,…, n}, with edge-weight 

function w : E → R.

Output: n  n matrix of shortest-path lengths (i, j) for all i, j  V.

IDEA:

• Run Bellman-Ford once from each vertex.

• Time = O(V 2E).

• Dense graph ((n2) edges) (n4) time in  the worst case.

Good first try! Can we use DP to solve it？

All-pairs shortest paths
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Optimal substructure
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k-1

2

…

1

3

k
k+1

u

v

n

Label the vertices 1,2,…,n
(We omit some edges in the 

picture below – meant to be a 
cartoon, not an example).

Let D(k-1)[u,v] be the solution 
to Sub-problem(k-1). 

This is the shortest 
path from u to v 

through the blue set.  
It has cost D(k-1)[u,v]

Sub-problem(k-1): 
For all pairs, u,v, find the cost of the shortest path from 
u to v, so that all the internal vertices on that path are 
in {1,…,k-1}. 

Question: How can we find D(k)[u,v] using D(k-1)?



How can we find D(k)[u,v] using D(k-1)?
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k-1

2

…

1

3

k
k+1

u

v

n

D(k)[u,v] is the cost of the 
shortest path from u to v so 
that all internal vertices on 
that path are in {1, …, k}.



How can we find D(k)[u,v] using D(k-1)?

72

k-1

2

…

1

3

k
k+1

u

v

n

Case 1: we don’t 
need vertex k.

D(k)[u,v] = D(k-1)[u,v] 

D(k)[u,v] is the cost of the 
shortest path from u to v so 
that all internal vertices on 
that path are in {1, …, k}.



How can we find D(k)[u,v] using D(k-1)?
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k-1

2

…

1

3

k
k+1

u

v

n

Case 2: we need 
vertex k.

D(k)[u,v] is the cost of the 
shortest path from u to v so 
that all internal vertices on 
that path are in {1, …, k}.



Case 2 continued
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k-1

2

…

1

3

k

u
v

n

• Suppose there are no negative 
cycles.
• Then WLOG the shortest path from 

u to v through {1,…,k} is simple.

• If that path passes through k, it 
must look like this:

• This path is the shortest path 
from u to k through {1,…,k-1}.
• sub-paths of shortest paths are 

shortest paths

• Similarly for this path.

Case 2: we need 
vertex k.

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v] 



How can we find D(k)[u,v] using D(k-1)?
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k-1

2

…

1

3

k

u
v

Case 2: we need vertex k.

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v] 

k-1

2

…

1

3

k

u
v

Case 1: we don’t need vertex k.

D(k)[u,v] = D(k-1)[u,v] 



How can we find D(k)[u,v] using D(k-1)?

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Optimal substructure:
– We can solve the big problem using solutions to smaller problems.

• Overlapping sub-problems:
– D(k-1)[k,v] can be used to help compute D(k)[u,v] for lots of different u’s.

76

Case 1: Cost of 
shortest path 

through {1,…,k-1}

Case 2: Cost of shortest path 
from u to k and then from k to v 

through {1,…,k-1}



How can we find D(k)[u,v] using D(k-1)?

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Using our Dynamic programming paradigm, this immediately gives us 
an algorithm!
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Case 1: Cost of 
shortest path 

through {1,…,k-1}

Case 2: Cost of shortest path 
from u to k and then from k to v 

through {1,…,k-1}



Floyd-Warshall algorithm

• Initialize n-by-n arrays D(k) for k = 0,…,n
– D(k)[u,u] = 0 for all u, for all k

– D(k)[u,v] = ∞ for all u ≠ v, for all k 

– D(0)[u,v] = weight(u,v) for all (u,v) in E.

• For k = 1, …, n:
– For pairs u,v in V2:

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Return D(n)

78

The base case checks out: 
the only path through zero 
other vertices are edges 
directly from u to v.

This is a bottom-up Dynamic programming algorithm. 



We’ve basically just shown

• Theorem:
If there are no negative cycles in a weighted directed graph G, then the Floyd-
Warshall algorithm, running on G, returns a matrix D(n) so that: 

D(n)[u,v] = distance between u and v in G.

• Running time: O(n3)
– Better than running Bellman-Ford n times!

• Storage: 
– Need to store two n-by-n arrays, and the original graph.
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Work out the 
details of a proof!

As with Bellman-Ford, we don’t really need to store all n of the D(k).



What if there are negative cycles?

• Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
– “Negative cycle” means that there’s some v so that there is a path from v to v 

that has cost < 0.

– Aka, D(n)[v,v] < 0.

• Algorithm:
– Run Floyd-Warshall as before.

– If there is some v so that D(n)[v,v] < 0:

• return negative cycle.
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Single-source shortest paths

• Nonnegative edge weights

Dijkstra’s algorithm: O(|E| + |V| lg|V|)

• General

Bellman-Ford algorithm: O(|V||E|)

All-pairs shortest paths

• Nonnegative edge weights

Dijkstra’s algorithm |V| times: O(|V||E| + |V|2 lg| V|)

• General

Floyd-Warshall algorithms: (|V|3).

Summary: Shortest Path Problems and Algorithms
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