
1/50

Complexity Classes - P & NP

Wei Wang @ HKUST(GZ)

April 28, 2025

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

2/50

Introduction

The course so far: techniques for designing efficient algorithms,
e.g., divide-and-conquer, dynamic-programming, greedy-algorithms.

What happens if you can’t find an efficient algorithm? Is it your
“fault” or the problem’s?

Showing that a problem has an efficient algorithm is, relatively,
easy. “All” that is needed is to demonstrate an algorithm.

Proving that no efficient algorithm exists for a partic-ular problem
is difficult. How can we prove the non-existence of something?

We will now learn about NP Complete Problems, which provide
us with a way to approach this question.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

3/50

NP-Complete (NPC) Problems

A huge class of thousands of practical problems for which

Unknown if the problems have “efficient” solutions

despite man-years efforts and failing
known as P 6= NP? with a US$1,000,000 award offered by the
Clay Institute (http://www.claymath.org/).

known:

if any one of the NP-Complete Problems has an efficient
solution then all of the NP-Complete Problems have efficient
solutions
there is a large body of tools that often permit us to prove
when a new problem is NP-complete.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

http://www.claymath.org/

4/50

Outline

notation and terminology needed to properly discuss
NP-Complete problems

tools required to prove that problems are NP-complete.

Note: Proving that a problem is NP-Complete does not prove
that the problem is hard. It does indicate that the problem is
very likely to be hard.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

5/50

Contents of this Lecture

In this lecture we introduce the concepts that will permit us to
discuss whether a problem is ’hard’ or ’easy’.

Input size of problems.: the number of bits required to
encode the problem.

Optimization problems vs. decision problems.
Decision Problems: have Yes/No answers.
Optimization Problems require answers that are optimal
configurations.
Decision problems are no harder than the corresponding
optimization problems:

Found a method to solve the optimization problem =⇒
induces a method to solve the decision problem.
But not the other way around

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

6/50

Outline

Polynomial time algorithms. The Class P.

The Class NP.

Problems in the two classes.

the class co-NP.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

7/50

Encoding the Inputs of Problems

Need to be formal about the input size of a problem.

Example

How do we encode graphs?

A graph G may be represented by its adjacency matrix
A = [aij]i ,j∈[n]. G can then be encoded as the binary string of
length n2,

a11 . . . a1na21 . . . a2n . . . an1 . . . ann

Remark: the inputs of any problem can be encoded as binary
strings.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

8/50

The Input Size of Problems

The input size of a problem may be defined in a number of ways.

Definition

(Standard Definition) The input size of a problem s is the
minimum number of bits ({0, 1}) needed to encode the input of
the problem.

Note:

The exact input size s (i.e., the “minimum” part), is hard to
compute in most cases.

Nevertheless, for most problems, it is sufficient to choose
some natural and (usually) simple, encoding and use the size
s of this encoding.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

9/50

Input Size Example: Composite

Problem: Given a positive integer n, are there integers j , k > 1
such that n = j · k? (i.e., is n a composite number?)

Question

What is the input size of this problem?

Answer: Any integer n > 0 can be represented in the binary
number system as n =

∑k
i=0 ai2

i , where k = dlog2(n + 1)e − 1
and so be represented by the string a0a1 . . . ak of length
dlog2(n + 1)e, and hence a natural measure of input size (or just
log2 n)

Obj size(Obj)

z val

h

?

g

=

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

10/50

Input Size Example: Sorting

Sorting Problem: Sort n integers a1, . . . , an.

Question

What is the input size of this problem?

Solution: Using fixed length encoding writes ai as binary string of
length

m = dlog2 max(|ai |+ 1)e

This coding gives input size nm.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

11/50

Warning

Running times of algorithms, unless otherwise specified, should be
expressed in terms of input size.

For example, the naive sieve algorithm for determining whether n
is composite compares n against the first n − 1 numbers to see if
any of them divides n. This makes Θ(n) comparisons so it might
seem linear and very efficient.

But, note that the size of the problem is size(n) = log2 n so the
number of comparisons performed is actually

Θ(n) = Θ
(

2size(n)
)

which is exponential and not very good.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

12/50

Input Size of Problems

Definition

Two positive functions f (n) and g(n) are of the same type if

c1g(na1)b1 ≤ f (n) ≤ c2g(na2)b2

for all large n, where a1, b1, c1, a2, b2, c2 are some positive
constants.

For example, all polynomials are of the same type, but polynomials
and exponentials are of different types.

Suppose s is the actual input size in bits needed to encode the
problem. From this point of view, any quantity t, satisfying

sa1 ≤ t ≤ sa2

for some positive constants a1 and a2 (independent of s), may
also be used as a measure of the input size of a problem.
This will simplify our discussions.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

13/50

Input Size Example: Graphs Redux

Graph problems: For many graph problems, the input is a graph
G = (V ,E).

Question

What is the input size of this problem?

A natural choice: There are n vertices and e edges. So we need to
encode n + e objects. With fixed length coding, the input size is

(n + e)dlog2(n + e + 1)e

Since

[(n + e)dlog2(n + e + 1)e]1/2 < n + e < (n + e)dlog2(n + e + 1)e

we may use n + e as the input size.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

14/50

Input Size Example: Integer Multiplication

Integer multiplication problem: Compute a× b.

Question

What is the input size of this problem?

Solution: The (minimum) input size is

s = dlog2(a + 1)e+ dlog2(b + 1)e

A natural choice is to use

t = log2 max(a, b)

as the input size since

s

2
≤ t ≤ s

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

15/50

Decision Problems

Definition

A decision problem is a question that has two possible answers,
yes and no.

Note: If L is the problem and x is the input we will often write
x ∈ L to denote a yes answer and y 6∈ L to denote a no answer.

Note: This notation comes from thinking of L as a language and
asking whether x is in the language L (yes) or not (no).

Definition

An optimization problem requires an answer that is an optimal
configuration.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

16/50

Decision Problems

Remark: An optimization problem usually has a corresponding
decision problem.

Examples that we will see:

MST vs. Decision Spanning Tree (DST)

Knapsack vs. Decision Knapsack (DKnapsack)

SubSet Sum vs. Decision Subset Sum (DSubset Sum)

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

17/50

Decision Problem: MST

Optimization problem: Minimum Spanning Tree

Given a weighted graph G , find a minimum spanning tree (MST)
of G .

Decision problem: Decision Spanning Tree (DST)

Given a weighted graph G and an integer k, does G have a
spanning tree of weight at most k?

The inputs are of the form (G , k). So we will write (G , k) ∈ DST
or (G , k) /∈ DST to denote, respectively, yes and no answers.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

18/50

Decision Problem: Knapsack

We have a knapsack of capacity W (a positive integer) and n
objects with weights w1, ...,wn and values v1, ..., vn, where vi and
wi are positive integers.

Optimization problem: Knapsack

Find the largest value
∑

i∈T vi of any subset that fits in the
knapsack, that is,

∑
i∈T wi ≤W .

Decision problem: Decision Knapsack (DKnapsack)

Given k, is there a subset of the objects that fits in the knapsack
and has total value at least k?

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

19/50

Decision Problem: Subset Sum

The input is a positive integer C and n objects whose sizes are
positive integers s1, . . . , sn.

Optimization problem: Subset Sum

Among subsets of the objects with sum at most C , what is the
largest subset sum?

Decision problem: Decision Subset Sum (DSubset Sum)

Is there a subset of objects whose sizes add up to exactly C?

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

20/50

Optimization and Decision Problems

For almost all optimization problems there exists a
corresponding simpler decision problem.

Given a subroutine for solving the optimization problem,
solving the corresponding decision problem is usually trivial.

Example: If we know how to solve MST we can solve DST.
Solution:

1 y = solve the MST problem
2 if y ≤ k, answer Yes; else, answer No.

Thus if we prove that a given decision problem is hard to solve
efficiently, then it is obvious that the optimization problem
must be (at least as) hard.

Note: The reason for introducing Decision problems is that it will
be more convenient to compare the ’hardness’ of decision problems
than of optimization problems (since all decision problems share
the same form of output, either yes or no.)

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

21/50

Decision Problems: Yes-Inputs and No-Inputs

Definition

Yes-Input and No-Input: An instance of a decision problem is
called a yes-input (resp. no-input) if the answer to the instance is
yes (resp. no).

CYC Problem: Does an undirected graph G have a cycle?
Example of Yes-Inputs and No-Inputs:

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

22/50

Decision Problems: Yes-Inputs and No-Inputs

Decision Problem (TRIPLE): Does a triple (n, e, t) of nonnegative
integers satisfy e 6= n − t?

Example of Yes-Inputs: (9, 8, 2), (20, 2, 17).

Example of No-Inputs: (10, 8, 2), (20, 2, 18).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

23/50

Complementary Problems

Let L denote some decision problem. The complementary
problem L is the decision problem such that the yes-answers of L
are exactly the no-answers of L. Note that

L = L

Example:

COMPOSITE: is given positive integer n composite?

PRIMES: is given positive integer n a prime number?

COMPOSITE = PRIMES
PRIMES = COMPOSITE

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

24/50

Complexity Classes

The Theory of Complexity deals with

the classification of certain “decision problems” into several
classes:

the class of “easy” problems,
the class of “hard” problems,
the class of “hardest” problems;

relations among the three classes;

properties of problems in the three classes.

Question: How to classify decision problems?

Answer: Use “polynomial-time algorithms.”

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

25/50

Polynomial-Time Algorithms

Definition

An algorithm is polynomial-time if its running time is O(nk),
where k is a constant independent of n, and n is the input size of
the problem that the algorithm solves.

Remark

When deciding whether an algorithm is polynomial time, it does
not whether an algorithm is polynomial time.

This explains why we introduced the concept of two functions
being of the same type earlier on. Using the definition of
polynomial-time it is not necessary to fixate on the input size as
being the exact minimum number of bits needed to encode the
input!

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

26/50

Polynomial-Time Algorithms

Examples of Polynomial-Time Algorithms:

The standard multiplication algorithm learned in school has
time O(m1m2) where m1 and m2 are, respectively, the
number of digits in the two integers.

DFS has time O(n + e).

Kruskal’s MST algorithm runs in time O((e + n) log n).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

27/50

Non-polynomial-Time Algorithms

Definition

An algorithm is non-polynomial-time if the running time is not
O(nk) for any fixed k ≥ 0.

Example

Consider the brute force algorithm fo PRIME:

it checks, in time Θ((logN)2), whether K divides N for each
K with 2 ≤ K ≤ N − 1.

The algorithm uses Θ(N(logN)2) time ⇒ The algorithm is
nonpolynomial! Why?

The input size is n = log2N, and so Θ(N(logN)2) = Θ(2nn2).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

27/50

Non-polynomial-Time Algorithms

Definition

An algorithm is non-polynomial-time if the running time is not
O(nk) for any fixed k ≥ 0.

Example

Consider the brute force algorithm fo PRIME:

it checks, in time Θ((logN)2), whether K divides N for each
K with 2 ≤ K ≤ N − 1.

The algorithm uses Θ(N(logN)2) time ⇒ The algorithm is
nonpolynomial! Why?
The input size is n = log2N, and so Θ(N(logN)2) = Θ(2nn2).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

28/50

Is Knapsack Polynomial?

Consider the knapsack problem with capacity W and n objects with
weights w1, . . . ,wn and values v1, . . . , vn (all parameters are positive
integers).

The optimization problem is to find the largest value
∑

i∈T vi of any
subset that fits in the knapsack, that is,

∑
i∈T wi ≤W .

The decision problem is, given k , to find if there is a subset of the
objects that fits in the knapsack and has total value at least k?

Question

In class, we saw a Θ(nW) dynamic programming algorithm for solving
the optimization version of Knapsack. Is this a polynomial algorithm?

No! The size of the input is

size(I) = log2 W +
∑
i

log2 wi +
∑
i

log2 vi

nW is not polynomial in size(I).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

28/50

Is Knapsack Polynomial?

Consider the knapsack problem with capacity W and n objects with
weights w1, . . . ,wn and values v1, . . . , vn (all parameters are positive
integers).

The optimization problem is to find the largest value
∑

i∈T vi of any
subset that fits in the knapsack, that is,

∑
i∈T wi ≤W .

The decision problem is, given k , to find if there is a subset of the
objects that fits in the knapsack and has total value at least k?

Question

In class, we saw a Θ(nW) dynamic programming algorithm for solving
the optimization version of Knapsack. Is this a polynomial algorithm?

No! The size of the input is

size(I) = log2 W +
∑
i

log2 wi +
∑
i

log2 vi

nW is not polynomial in size(I).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

29/50

Is Knapsack Polynomial?

Further comments:

Depending upon the values of the wi and vi , nW could even
be exponential in size(I).

It is unknown as to whether there exists a polynomial time
algorithm for Knapsack.

It is an NP-Complete problem, requiring us to prove either P
= NP or P 6= NP.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

30/50

Polynomial- vs. Nonpolynomial-Time

Non-polynomial-time algorithms are impractical.

e.g., if an algorithm has 2n complexity. When n = 100, and
one can execute 1012 operations per second: It takes

2100/1012 ≈ 1018.1 seconds ≈ 4 · 1010 years.

For the sake of our discussion of complexity classes
Polynomial-time algorithms are “practical”.

Note: in reality

an O(n20) algorithm is not really practical.
even an O(n2) algorithm can be impractical for big data.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

31/50

Polynomial-Time Solvable Problems

Definition

A problem is solvable in polynomial time (or, the problem is in
polynomial time) if there exists an algorithm which solves the
problem in polynomial time.

Examples: The integer multiplication problem, and the cycle
detection problem for undirected graphs.

Remark: Polynomial-time solvable problems are also called
tractable problems.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

32/50

The Class P

Definition

The class P consists of all decision problems that are solvable in
polynomial time. That is, there exists an algorithm that will decide
in polynomial time if any given input is a yes-input or a no-input.

Question

How to prove that a decision problem is in P?

You need to find a polynomial-time algorithm for this problem.

Question

How to prove that a decision problem is not in P?

You need to prove there is no polynomial-time algorithm for this
problem (much harder).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

33/50

The Class P: An Example

Example

Is a given connected graph G a tree?

This problem is in P.

Proof.

We need to show that this problem is solvable in polynomial time.
We run DFS on G for cycle detection. If a back edge is seen, then
output NO, and stop. Otherwise, output YES.

Recall that the input size is n + e, and DFS has running time
O(n + e). So this algorithm is linear, and the problem is in P.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

34/50

The Class P: Another Example

Question

DST: Given weighted graph G and parameter k > 0 does G have a
spanning tree with weight ≤ k?

This problem is in P.

Proof.

Run Kruskal’s algorithm and find a minimal spanning tree, T , of
G . Calculate w(T) the weight of T . If k ≤ w(T), answer Yes;
otherwise, answer No.

Recall that Kruskal’s algorithm runs in O((e + n) log n) time so
this is polynomial in the size of the input.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

34/50

The Class P: Another Example

Question

DST: Given weighted graph G and parameter k > 0 does G have a
spanning tree with weight ≤ k?

This problem is in P.

Proof.

Run Kruskal’s algorithm and find a minimal spanning tree, T , of
G . Calculate w(T) the weight of T . If k ≤ w(T), answer Yes;
otherwise, answer No.

Recall that Kruskal’s algorithm runs in O((e + n) log n) time so
this is polynomial in the size of the input.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

35/50

Certificates and Verifying Certificates

What about class NP? Before introducing NP, we must first

introduce the concept of Certificates.

Observation: A decision problem is usually formulated as:

Is there an object satisfying some conditions?

A Certificate is a specific object satisfying the conditions (exists
only for yes-inputs by definition).

Verifying a certificate: Check that the given object (certificate)
satisfies the conditions (that is, verifying that the input is a
yes-input).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

36/50

Certificates and Verifying Certificates Examples

COMPOSITE: Is given positive integer n composite?

Certificate: an integer a dividing n such that 1 < a < n.

Verifying a certificate: Given a certificate a, check whether a
divides n. This can be done in time O((log2 n)2) (recall that input
size is log2 n so this is polynomial in input size).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

37/50

Certificates and Verifying Certificates Example

DSubsetSum: Input is a positive integer C and n positive integers
s1, ..., sn. Is there a subset of these integers that add up to exactly
C?

Certificate: a subset T of subscripts (the corresponding integers
should add up to C).

Verifying a certificate: Given a subset T of subscripts, check
whether

∑
i∈T si = C

Input-size is m = (log2 C +
∑n

i=1 log2 si)

and verification can be done in time

O

(
log2 C +

∑
i∈T

log2 si

)
= O(m)

so this is polynomial time.
Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

38/50

Certificates and Verifying Certificates

Hamiltonian Cycle: Input is a graph G = (V ,E). A cycle of
graph G is called Hamiltonian if it contains every vertex exactly
once.
Example:

Optimization problem: HamCyc

Find a Hamiltonian cycle for this graph or say that one doesn’t
exist.

Decision problem: DHamCyc

Does G have a Hamiltonian cycle?

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

39/50

DHamCyc: Verifying a Certificate

Certificate: an ordering of the n vertices in G (corresponding to
their order along the Hamiltonian Cycle), i.e., vi1 , vi2 , . . . , vin .

Verification: Given a certificate the verification algorithm checks
whether it is a Hamiltonian cycle of G by simply checking whether
all of the edges

(vi1 , vi2), (vi2 , vi3), . . . , (vin−1 , vin), (vin , vi1)

appear in the graph. This can be done in O(n) time so this is
polynomial.

Important Note: There are many possible types of certificates for
DHamCyc. This is only one such. Another type of certificates
might be a set of n edges for which it has to be confirmed that
they are all in G and that they form a Hamiltonian Cycle.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

40/50

The Class NP

Definition

The class NP consists of all decision problems such that, for each
yes-input, there exists a certificate that can be verified in
polynomial time.

Example: DSubsetSum ∈ NP. (As shown earlier, there is a
polynomial-time algorithm to verify a certificate.)

Example: DHamCyc ∈ NP. (As shown earlier, there is a
polynomial time algorithm to verify a certificate.)

Remark: NP stands for ”nondeterministic polynomial time”.
The class NP was originally studied in the context of nondetermin-
ism, here we use an equivalent notion of verification.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

41/50

P = NP?

One of the most important problems in computer sci- ence is
whether P = NP or P 6= NP ? Put another way, is every problem
that can be verified in polynomial time also decidable in
polynomial time? Or, does there exist some decision problem L
which has certificates that can be verified in polynomial time but
for which no algorithm can ever be constructed that decides L in
polynomial time?

At first glance, it seems ”obvious” that P 6= NP; after all, deciding
a problem is much more restrictive than verifying a certificate.

However, so far, we are still no closer to solving it and do not know
the answer. The search for a solution, though, has provided us
with deep insights into what distinguishes an ”easy” problem from
a ”hard” one.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

42/50

SATISFIABILITY I

We will now introduce Satisfiability (SAT), which, we will see
later, is one of the most important NP problems.

Definition

A Boolean formula is a logical formula which consists of

boolean variables (0=false, 1=true),

logical operations
x , NOT,
x ∨ y , OR,
x ∧ y , AND.

These are defined by:
x y x x ∨ y x ∧ y

0 0 1 0 0
0 1 1 0
1 0 0 1 0
1 1 1 1

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

43/50

Satisfiability II

A given Boolean formula is satisfiable if there is a way to assign
truth values (0 or 1) to the variables such that the final result is 1.

Example: f (x , y , z) = (x ∧ (y ∨ z)) ∨ (y ∧ z ∧ x).
The assignment x = 1, y = 1, z = 0 makes f (x , y , z) true, and
hence it is satisfiable.
In fact, more than one satisfiable assignment.
x y z (x ∧ (y ∨ z)) (y ∧ z ∧ x) f (x , y , z)

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
1 0 1 0 0 0
1 1 0 1 0 1
1 1 1 1 0 1

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

44/50

Satisfiability III

Example:
f (x , y) = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y).

x y x ∨ y x ∨ y x ∨ y x ∨ y f (x , y)

0 0 0 1 1 1 0
0 1 1 1 0 1 0
1 0 1 0 1 1 0
1 1 1 1 1 0 0

Therefore, there is no assignment that makes f (x , y) true, and
hence it is NOT satisfiable.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

45/50

SAT ∈ NP

Definition

SAT Problem: Determine whether an input Boolean formula is
satisfiable.

Claim

SAT ∈ NP.

Proof.

The evaluation of a formula of length n (counting variables,
operations, and parentheses) requires at most n evaluations, each
taking constant time. Hence, to check a certificate takes time
O(n).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

46/50

k-SAT ∈ NP

Definition

For a fixed k , consider Boolean formulas in k-conjunctive normal
form (k-CNF):

f1 ∧ f2 ∧ · · · ∧ fn

where each fi is of the form

fi = yi ,1 ∨ yi ,2 ∨ · · · ∨ yi ,k

where each yi ,j is a variable or the negation of a variable.

An example of a 3-CNF formula is

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

47/50

k-SAT ∈ NP

Definition

k-SAT problem: Determine whether an input Boolean k-CNF
formula is satisfiable.

Non-trivial results:

Claim

3-SAT ∈ NP.

Claim

2-SAT ∈ P

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

48/50

2-SAT ∈ P (Optional)

We provide a linear-time algorithm to decide whether a 2-SAT
(with m clauses involving n variables) is satisfiable or not.

1 (Transformation) Notice that every clause in a 2-SAT is of the
form xi ∨ xj , which is equivalent to two implications:
¬xi =⇒ xj and ¬xj =⇒ xi

2 (Graph construction) Construct the implication graph G with
2n vertices ({ xi } and {¬xi }, and ≤ 2m edges.

3 (Lemma) A 2-CNF formula is unsatisfiable iff ∃xi such that xi
and ¬xi belong to the same SCC of G .

⇒: Notice the transitivity of implication; contradiction is
xi =⇒ 6= xi .
⇐: Require topological sort on the condensed graph (modulo
SCC). (details omitted)

4 (Algorithm)
1 Run Tarjan’s algorithm to compute SCCs of G .
2 For every variable x , if SCC (x) = SCC (¬x), then return

UNSAT; else return SAT;
3 (optional) Produce an assignment if SAT.

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

49/50

Some Decision Problems in NP

Some where we have given proofs:
Decision subset sum problem (DSubsetSum).
Decision Hamiltonian cycle (DHamCyc).
Satisfiability (SAT).
Decision vertex cover problem (DVC).

Some others (without proofs given; try to find proofs):
Decision minimum spanning tree problem (DMST).
Decision 0-1 knapsack problem (DKnapsack).
Decision bin packing problem (DBinPacking)

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

50/50

The Class co-NP

Note that if L ∈ NP, there is no guarantee that L ∈ NP.

Having certificates for yes-inputs, does not mean that we have
certificates for the no-inputs.

The class of decision problems L such that L ∈ NP is called
co-NP.

Example: COMPOSITE ∈ NP and so
PRIMES = COMPOSITE ∈ co-NP.

Remark: in contrast, we do have that L ∈ P, if and only if L ∈ P.

This is because a polynomial time algorithm for L is also a
polynomial time algorithm for L (the NO-answers for L become
Yes-answers for L and vice-versa).

Wei Wang @ HKUST(GZ) Complexity Classes - P & NP

