40TH INTERNATIONAL CONFERENCE ON CONCEPTUAL MODELING

Recent Advances in Entity Resolution

Bing Li, Yaoshu Wang, and Wei Wang

Science, Technology

What is Entity Resolution?

- Entity Resolution: Problem of identifying co-referent manifestations that refer to the same real-world entity from different data sources.
- Examples of co-referent manifestations:
 - Different descriptions of a same product on different e-commerce websites (e.g., Google shopping, amazon)

What is Entity Resolution?

- Entity Resolution: Problem of identifying co-referent manifestations that refer to the same real-world entity from different data sources.
- Examples of co-referent manifestations:
 - Web pages with differing descriptions of the same person.

https://en.wikipedia.org/wiki/Joe_Biden

Joseph Robinette Biden Jr.^[a]

(/'bardan/ BY-dan, born November 20, 1942) is an American politician who is the 46th and current president of the United States. A member of the Democratic Party, he served as the 47th vice president from 2009 to 2017 under Barack Obama and represented Delaware in the United States Senate from 1973 to 2009.

Born and raised in Scranton, Pennsylvania, and later in New Castle County, Delaware, Biden studied at the University of Delaware before earning his law

Official portrait, 2021 46th President of the United States Incumbent

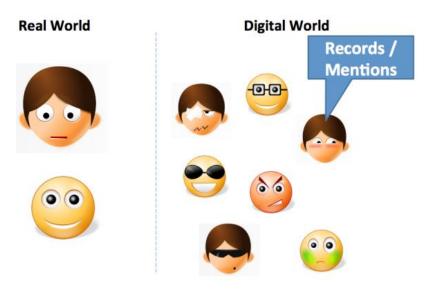
https://www.britannica.com/

FULL ARTICLE

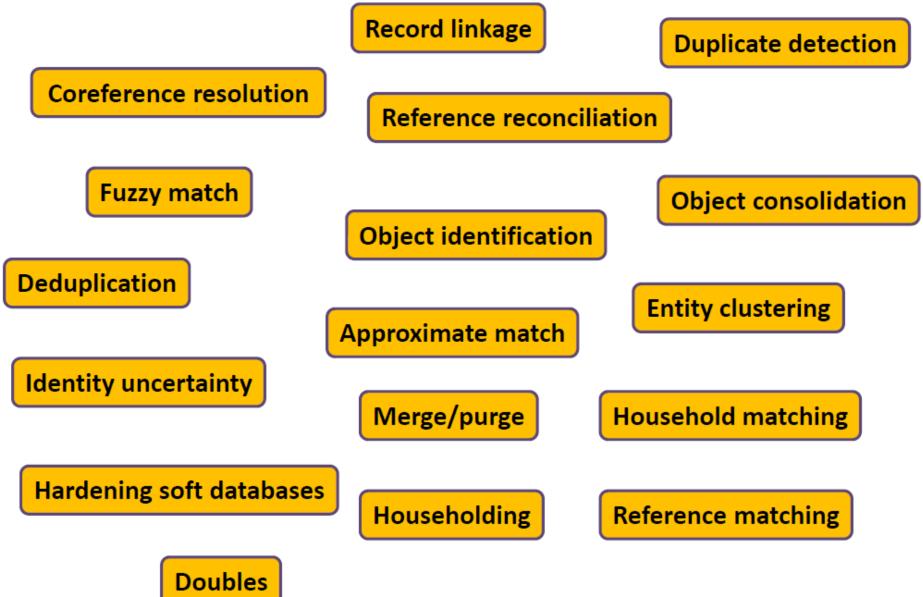
Joe Biden, byname of Joseph Robinette Biden, Jr., (born November 20, 1942, Scranton, Pennsylvania, U.S.), 46th president of the United States (2021–) and 47th vice president of the United States (2009–17) in the Democratic administration of Pres. Barack Obama. He previously represented Delaware in the U.S. Senate (1973–2009).

What is Entity Resolution?

- Entity Resolution: Problem of identifying co-referent manifestations that refer to the same real-world entity from different data sources.
- Examples of co-referent manifestations:
 - Different photos of the same object.



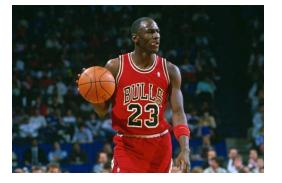
Ironically, Entity Resolution has many duplicate names



http://www.cs.umd.edu/~getoor/Tutorials/ER_VLDB2012.pdf

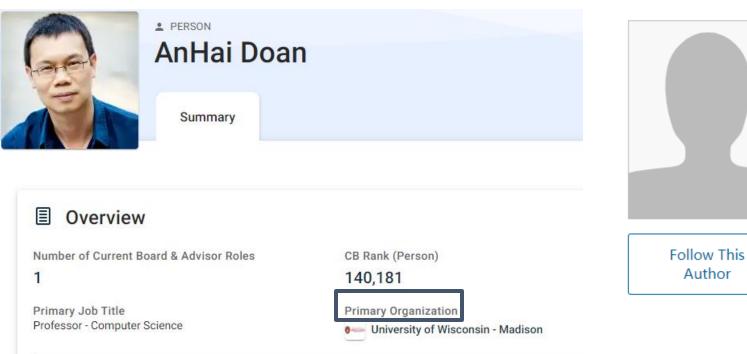
- Heterogeneity everywhere \bullet
 - Name/Attribute ambiguity 0

Michael Jordan



Prof. Wei Wang

- Heterogeneity everywhere
 - Changing attribute names



AnHai Doan 💡

Also published under: A. Doan, Anhai Doan, A. H. Doan

Affiliation

Departments of Computer Science University of Wisconsin-Madison WI 53706, USA

Publication Topics

information retrieval, Big Data, information retrieval systems, systems, neural nets, optimisation, pattern classification, pub **Show More**

Example by Xin Luna Dong

- Heterogeneity everywhere
 - Conflicting and erroneous values

IMDB

Anahí

Actress | Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in which she played a 17 year old girl while she was 13, and Vivo Por Elena, in which she played Talita, a naive and innocent teenager. Anahi lives with her mother and sister name Marychelo. She hopes to become a fashion designer one day, and is currently pursuing a career in singing. See full bio »

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico

More at IMDbPro = -

Contact Info: View manager

SEE RANK

Anahí P	uente (Q169461)	
Mexican singer-s Mia	ongwriter and actress	
- In more langua	ages Configure	
Language	Label	Description
English	Anahi Puente	Mexican singer-songwriter and actress
Chinese	阿纳希·普恩特	No description defined
Spanish	Anahí Puente	Cantante, compositora y actriz mexicana
date of birth	§ 7 November 1983	/ edit
	~ 1 reference	
	imported from	Italian Wikipedia
		+ add reference

Example by Xin Luna Dong

- Heterogeneity everywhere
 - Missing values

Google

TITLE	MANUFACTURER	PRICE
microsoft powerpoint 2004 mac apple		228.95
microsoft powerpoint 2004 for mac upgrade	microsoft	97.99

Amazon

DESCRIPTION	MANUFACTURER	PRICE
powerpoint 2004 mac by microsoft	microsoft	229.99
powerpoint 2004 upgrade mac	microsoft	109.99

- Heterogeneity everywhere
 - Different value formatting

	А	В	С
1			
2		24-Sep-2019	
3		Tuesday, September 24, 2019	
4		2019-09-24	
5		9/24/19	
6		09/24/19	
7		September 24, 2019	
8		9/24/2019	
9			

Follow This Author

AnHai Doan 💡

Also published under: A. Doan, Anhai Doan, A. H. Doan

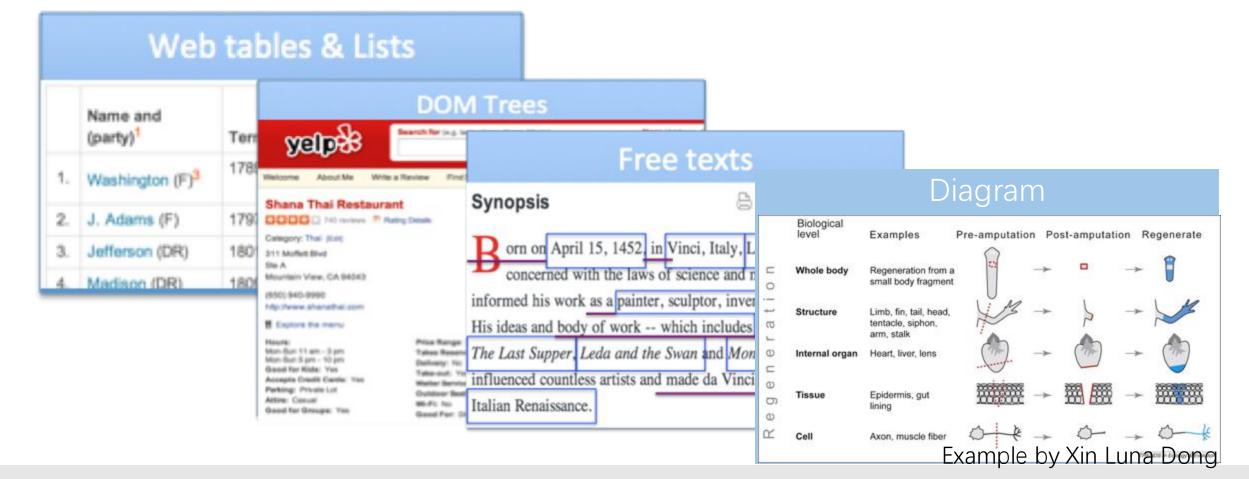
Affiliation

Departments of Computer Science University of Wisconsin-Madison WI 53706, USA

Publication Topics

information retrieval, Big Data, information retrieval systems, systems, neural nets, optimisation, pattern classification, pub **Show More**

- Heterogeneity everywhere
 - Different data types



What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

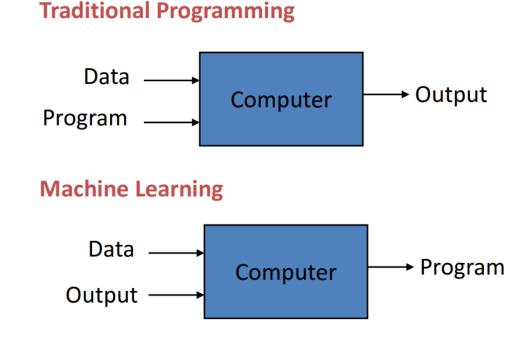
- Herbert Simon

Definition by Tom Mitchell:

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E

A well-defined learning task is given by <P, T, E>

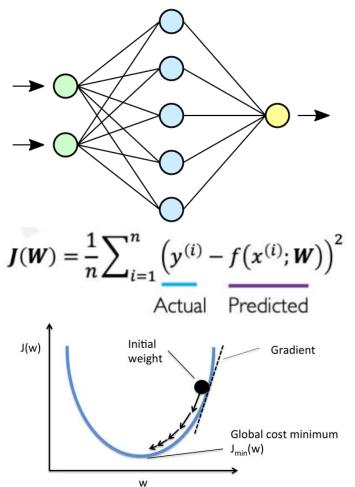


Based on slides by Eric Eaton

What is Deep Learning?

Deep Learning – Extract patterns from Data using Neural Networks

- Model
 - CNN, RNN, LSTM, Transformer
- Objective
 - Cross-entropy, L2 Loss, Hinge-loss
- Optimization
 - SGD, Adam, AdamW



Why Deep Learning Help?

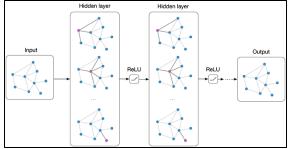
Deep learning models could

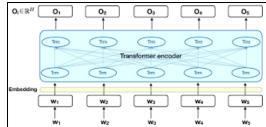
- Bridge vocabulary mismatch
 - Different value formatting or Changing attribute names
 - *E.g., AnHai Doan A. Doan A.H. Doan; Affiliation Primary organization*
- Represent data in an unified vector space
 - Different data types
 - E.g., Multimodality: image free text table
- Capture contextual information
 - Name/Attribute ambiguity
 - E.g., Prof. Wei Wang UKUST; Prof. Wei Wang UCLA
- Better Generalization
 - Conflicting and erroneous values
 - Missing values

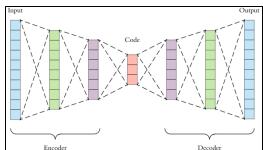
What Deep Learning Model is Used in ER?

	LSTM	DeepMatcher [SIGMOD'18]	DeepER [VLDB'18]		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	GCN	GraphER [AAAI'20]			Hidden layer Hidden layer Input Input ReLU
Deep Learning Model	Transformer- based LMs	BERT- ER[AAAI'21]	DITTO [VLDB'21]	Sbert [EMNLP'19]	
	VAE	VAER [ICDE'21]	VAR-Siamese [NIPS'18]	Autoencoder / Trans-encoder [VLDB'21]	$Embedding \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $
	Ensemble	RISK [JMLR'21]			Input Code

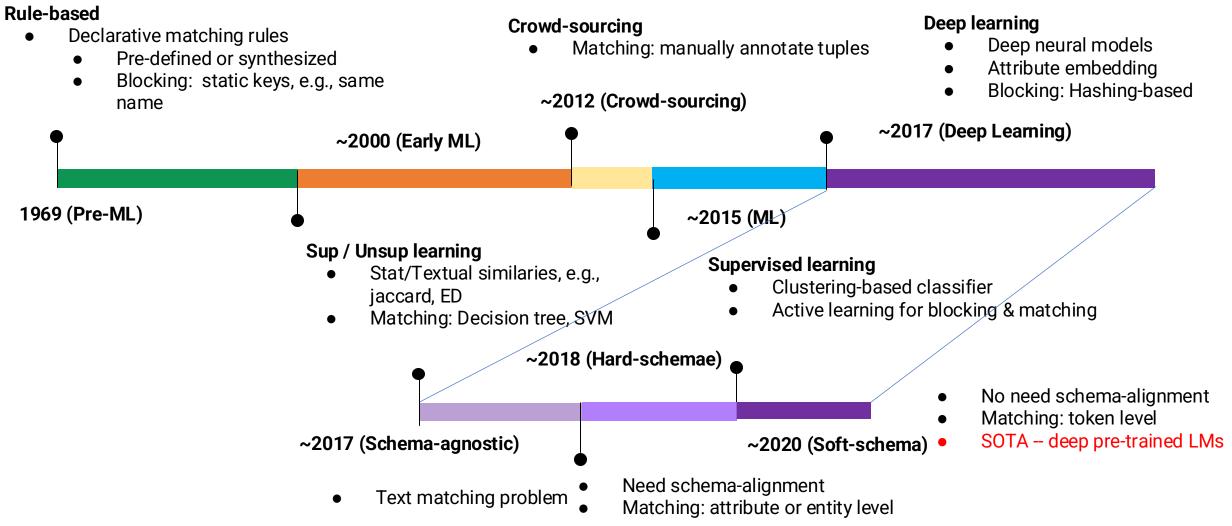
h₄

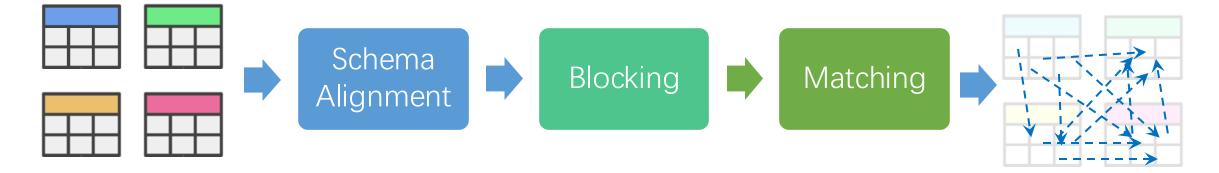






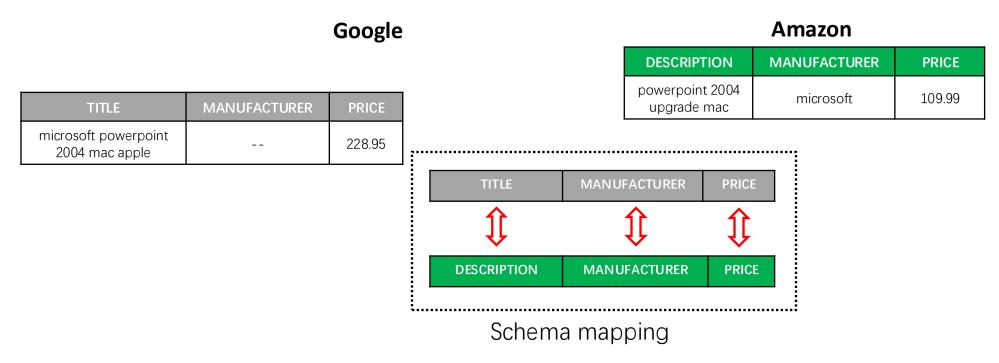
A Brief History of Entity Resolution



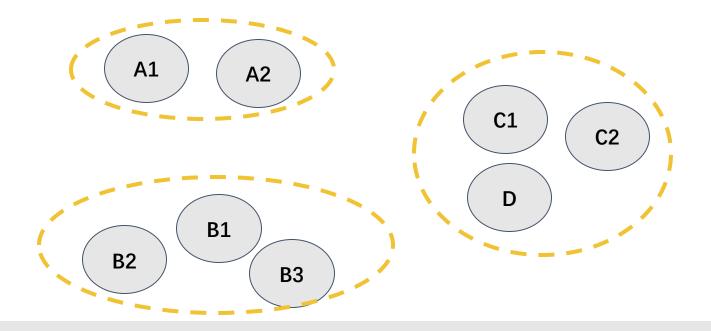


Data from different sources (Structural tables, Raw Text, HTML) Co-referent relations

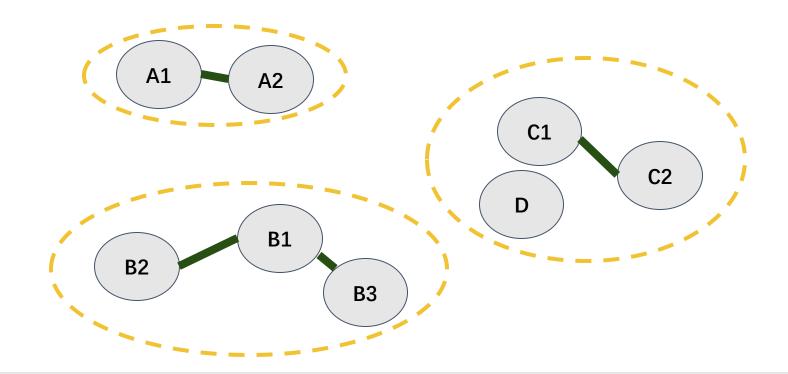
• Generate a mediate schema



- Grouping tuple pairs into blocks (or top-k ranking)
 - Avoid unnecessary matching between obviously dissimilar pairs



• Find co-references within each blocks



Entity Blocking – Problem Definition

- **Problem Definition**: Given two relational tables A and B with the same schema, find all tuple pairs ($a \in A$, $b \in B$) that match, i.e., refer to the same real-world entity. (R-S join)
- Evaluation
 - Efficiency
 - Pairs Quality (PQ) or precision
 - Reduction Ratio (RR)

$$PQ = \frac{|\text{TruePair(Cand)}|}{|\text{Cand}|}$$
$$RR = 1 - \frac{|\text{Cand}|}{|A| \times |B|}$$

- Running Time
- Effectiveness
 - Pair Completeness (PC) or recall

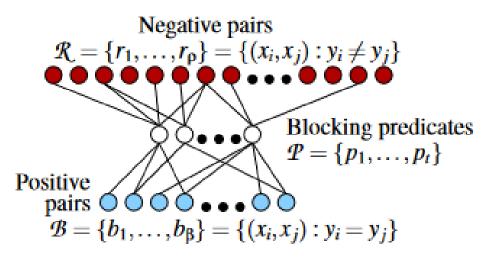
$$PC = \frac{|\text{TruePair(Cand)}|}{|\text{TruePair}(A \propto B)|}$$

Entity Blocking - Overview

- Non-learning methods
 - Baseline: Hash-based, sort-based, size-based similarity-based, etc.
 - Improved: meta-blocking, rule-based (e.g., MD), etc.
- Learning methods (Our main focus)
 - Learning rules: ApproxDNF, BSL, Fisher, etc.
 - Learning no-DL model: CBLOCK, Smurf, Supervised meta-block, etc.
 - Learning representations: DeepER, autoencoder, etc.
 - Learn to hash: BERT-ER

Entity Blocking – ApproxDNF [Bilenko et al., ICDM'06]

- Rule-based learning
- Schema-aware
- Disjunctive Normal Form (DNF) blocking
- Rely on predefined predicates, e.g., Jaccard, Same n First Chars, exact match, n-gram, etc.
- Red-Blue Set Cover
- Smaller reduction ratio and recall than unlearned basesline.



$$w^* = \underset{w}{\operatorname{argmin}} \sum_{\substack{(x_i, x_j) \in \mathcal{R} \\ x_i, x_j) \in \mathcal{B}}} [\![w^T p(x_i, x_j) > 0]\!]$$

s.t. $|\mathcal{B}| - \sum_{\substack{(x_i, x_j) \in \mathcal{B} \\ w \text{ is binary}}} [\![w^T p(x_i, x_j) > 0]\!] < \varepsilon$

Entity Blocking – BSL [Michelson et al., AAAI'06], BSL⁺ [Cao et al. IJCAI11]

unlabeled data

- Disjunctive Normal Form (DNF)
- Schema-aware
- Rely on **predefined predicates**
- Set Cover problem

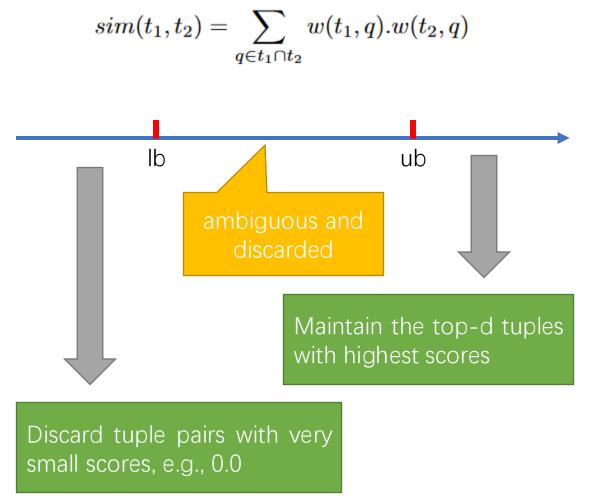
 $\arg \min_{h_P} \quad \cos(\mathbf{D}_L^x, P) + \alpha \cdot \cos(\mathbf{D}_U, P) \quad (1a)$ subject to $\cos(\mathbf{D}_L, P) > 1 - \epsilon \quad (1b)$

- Obj: Minimize RR (using labeled and unlabeled data)
- Cond: Recall is above a threshold

Alg	orithm 2 LEARN-ONE-CONJUNCTIO	N
	Input: Training set D', Set of blocking predicates $\{p_i\}$ A coverage threshold parameter A precision threshold parameter A parameter for beam search k $c^* \leftarrow$ null; $C \leftarrow \{p_i\}$;	
	repeat	
	$C' = \emptyset;$	
5:	for all $c \in C$ do	Cready beam
6:	for all $p \in \{p_i\}$ do	Greedy beam
7:	if $\operatorname{cov}(\mathbf{D}', c \wedge p) < \sigma$ then	search
8:	continue;	
9:	end if	
10:	$c^{\prime} \leftarrow c \wedge p;$	
11:	$C^{'}=C^{'}\cup\{c^{'}\};$	
12:	Remove any c' that are duplicates	from C' ;
13:	if $\operatorname{cost}(\mathbf{D}'_{L}, c') + \alpha \cdot \operatorname{cost}(\mathbf{D}'_{U}, c') < $	$< \operatorname{cost}(\mathbf{D}'_{L}, c^*) +$
	$\alpha \cdot \operatorname{cost}(\mathbf{D}'_{U}, c^{*}) \ precision(c') >$	
14:	$c^* \leftarrow c';$	
15:	end if	
16:	end for	
17:	end for	
	$C \leftarrow \text{best } k \text{ members of } C';$	
	until C is empty	
20:	return c*	

Entity Blocking – Fisher [Kejriwal et al., ICDM'13]

- Unsupervised rule-based learning
- Schema-aware
- Disjunctive Normal Form (DNF) blocking
- Automatically generate training instances.
- Fisher feature selection
- > 25% recall than unsupervised baseline

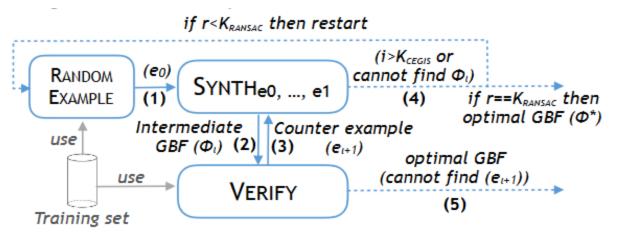


Entity Blocking – EM-GBF [Singh et al., VLDB'17]

- Rule-based learning
- Schema-aware
- General Boolean Formula(GBF)
- Large search space:
 - Combinations of predicates
 - Unknown thresholds for similari functions
- Interpretable and competitive with tree-based methods (e.g., random forest)

GBF:

$$\begin{array}{ll} \mbox{grammar} & G_{\rm attribute} \to r[{\sf A}_i] \approx_{(f,\theta)} s[{\sf A}'_i] \\ & i \in [1,n]; f \in \mathcal{F}; \theta \in [0,1] \\ \mbox{grammar} & G_{\rm GBF} \to G_{\rm attribute} \ ({\rm bound}:N_a) \\ & G_{\rm GBF} \to \neg G_{\rm GBF} \\ & G_{\rm GBF} \to G_{\rm GBF} \wedge G_{\rm GBF} \\ & G_{\rm GBF} \to G_{\rm GBF} \vee G_{\rm GBF} \end{array} \right\} \ ({\rm bound}:N_d)$$



Entity Blocking – DNF-BSL [Kejriwal et al., 2015]

- Unsupervised rule-based
 learning
- Schema-agnostic
- DNF blocking
- **Data**: RDF graph, heterogeneous tables

Algorithm 1 Learn Extended k-DNF Blocking Scheme **Input** : Set D of duplicate tuple pairs, Set Q of mappings **Parameters :** Beam search parameter k, SC-threshold κ **Output :** Extended DNF Blocking Scheme \mathcal{B} Method : //Step 0: Construct sets N and H Permute pairs in D to obtain N, |N| = |D|Construct set H of simple extended SBPs using set G of GBPs and QSupplement set H to get set H_c using k //Step 1: Build Multimaps M'_D and M'_N Construct $M_D = \langle X, H_X \rangle$, X is a tuple pair in D, $H_X \subseteq H_c$ contains the elements in H_c covering X Repeat previous step to build M_N for tuple pairs in N Reverse M_D and M_N to respectively get M'_D and M'_N //Step 2: Run approximation algorithm for all $X \in keyset(M'_D)$ do Score X by using formula $|M'_D(X)|/|D| - |M'_N(X)|/|N|$ Remove X if $score(X) < \kappa$ end for Perform W-SC on keys in M'_D using Chvatal's heuristic, weights are *negative* scores //Step 3: Construct and output DNF blocking scheme $\mathcal{B} := \text{Disjunction of chosen keys}$ Output \mathcal{B}

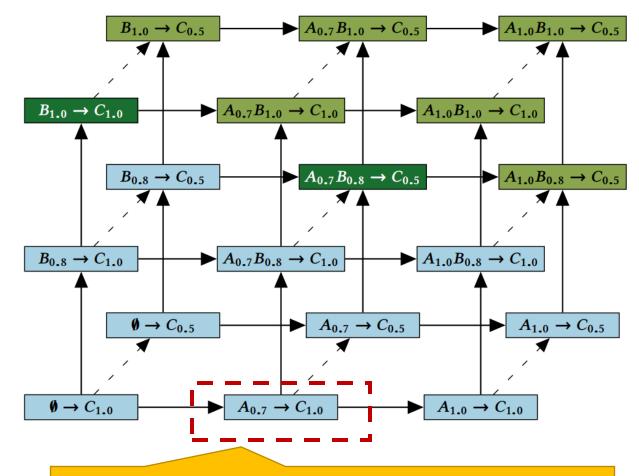
Entity Blocking – HyMD [Schirmer et al., TODS'20]

- NOT learning, based on mining
- Need labeled instances
- Matching Dependencies (MDs)

$$\left(\bigwedge_{i=1}^{m} R[A_i] \approx_{i,\lambda_i} S[B_i]\right) \to R[A_j] \approx_{j,\rho_j} S[B_j]$$

Mine **all minimal MDs** based on some interestingness measures, e.g.,

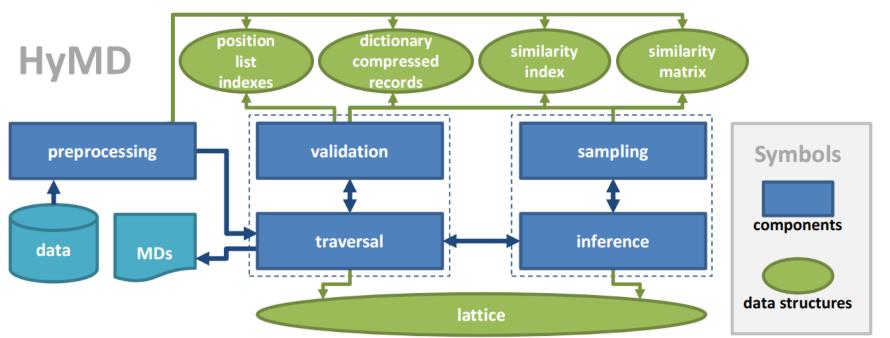
- Large support
- High confidence



Try all valid combinations of similarity functions
 Different thresholds, e.g., 0.7 of A

Entity Blocking – HyMD [Schirmer et al., TODS'20]

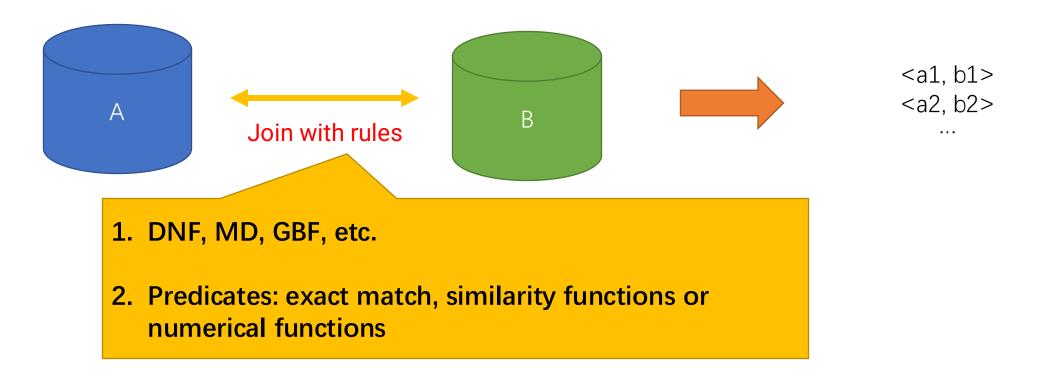
- **Predicates**: exact match and similarity functions (e.g., Jaccard, Edit distance, etc.)
- Hybrid search: levelwise + depth-first search



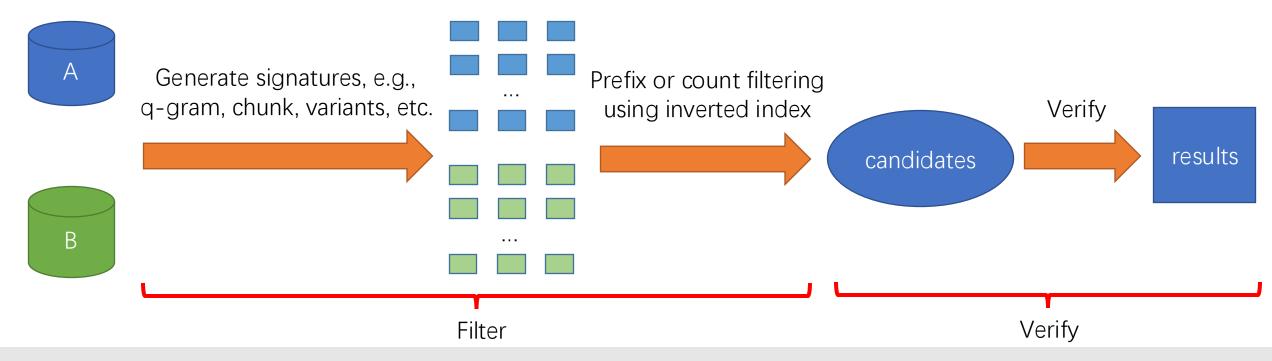
Performance

- High precision
 and low recall
- F-1 is not higher than RF.

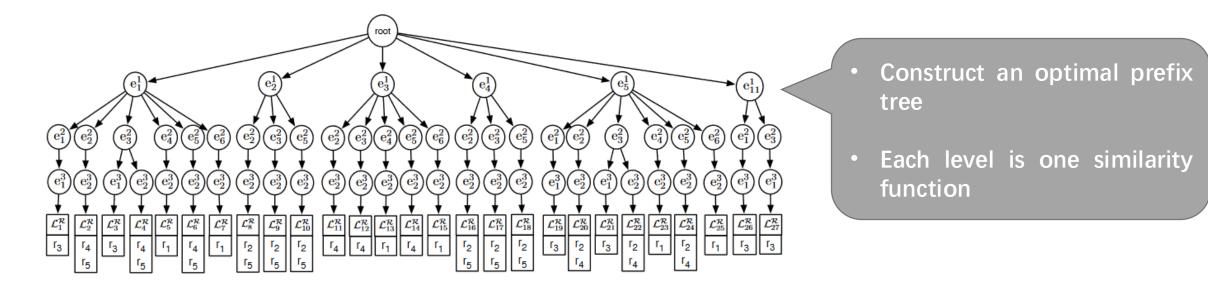
• **Problem**: Given two large relational tables A and B, and **multiple learned rules**, efficiently find all satisfied tuple pairs.



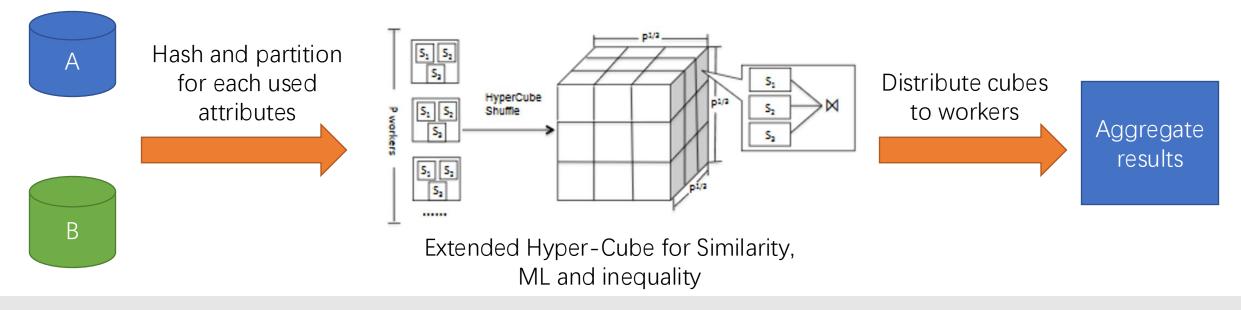
- Problem: Given two large relational tables A and B, and multiple learned rules, how to efficiently find all satisfied tuple pairs ?
- **Case I**: rule is **ONE single similarity function**, e.g., Jaccard(a, b) >= 0.8
- Algorithm: Similarity search and join (e.g., prefix/count filtering)



- **Problem**: Given two large relational tables A and B, and multiple **learned rules**, how to efficiently find all satisfied tuple pairs ?
- Case II: rule is ONE conjunctive query of similarity functions, e.g., Jaccard(t1, s1) >= 0.8 ^ ED(t1, s1) < 2
- Algorithm: Multi-attribute similarity join[Li et al. SIGMOD15']

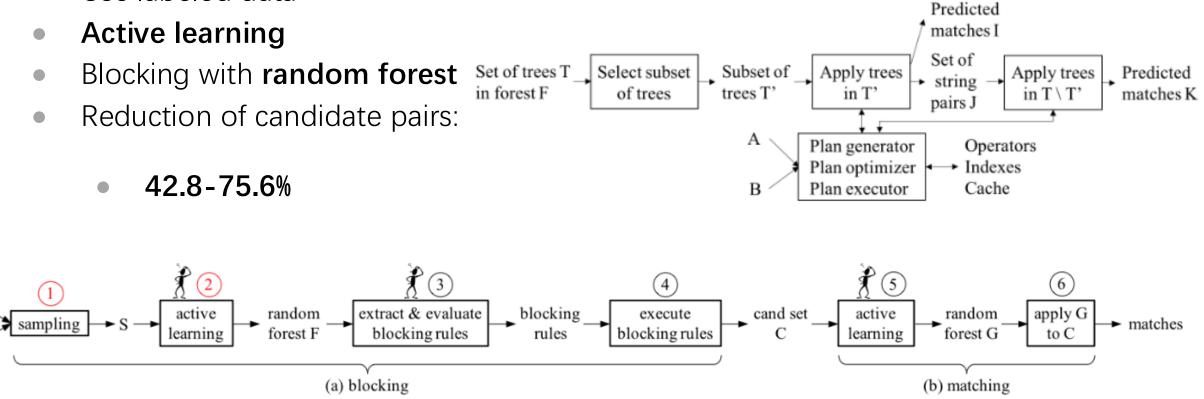


- **Problem**: Given two large relational tables A and B, and multiple **learned rules**, how to efficiently find all satisfied tuple pairs ?
- Case III: rules are GBF, DNF, or multi-MDs, e.g., (Jaccard(t1, s1) >= 0.8
 ^ ED(t1, s1) < 2) V (Jaro-Winkler(t1, s1) > 0.75) V …
- Algorithm: ErrorDetect [Fan et al. VLDB20']



Entity Blocking – Smurf [Suganthan G. C. et al., VLDB'19]

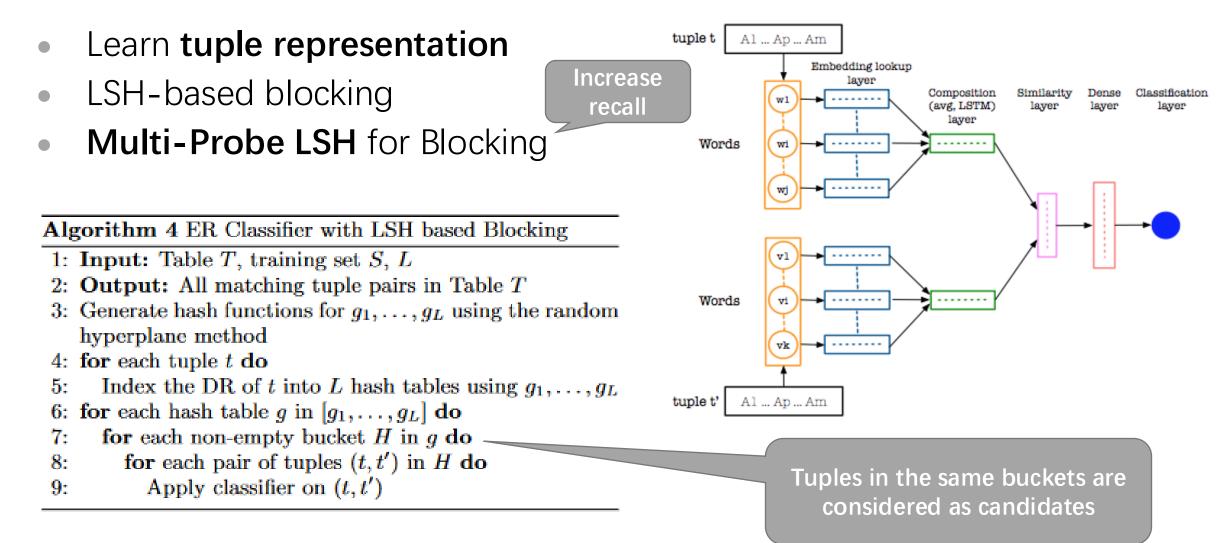
- Learn a tree-based binary classifier, e.g., decision tree, random forest
- Use labeled data



Entity Blocking – Meta-Blocking [Papadakis et al., VLDB'14]

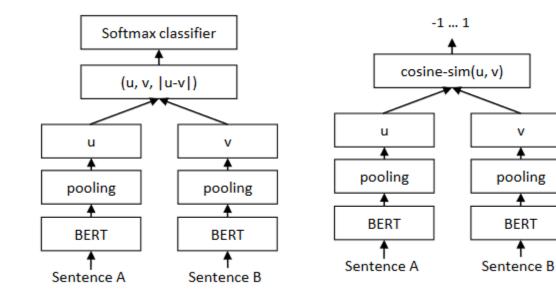
- Construct a blocking graph
- Learn a binary classifier to predict match or non-match for each edge
- Feature engineering

Entity Blocking – DeepER [Ebraheem et al., VLDB'18]

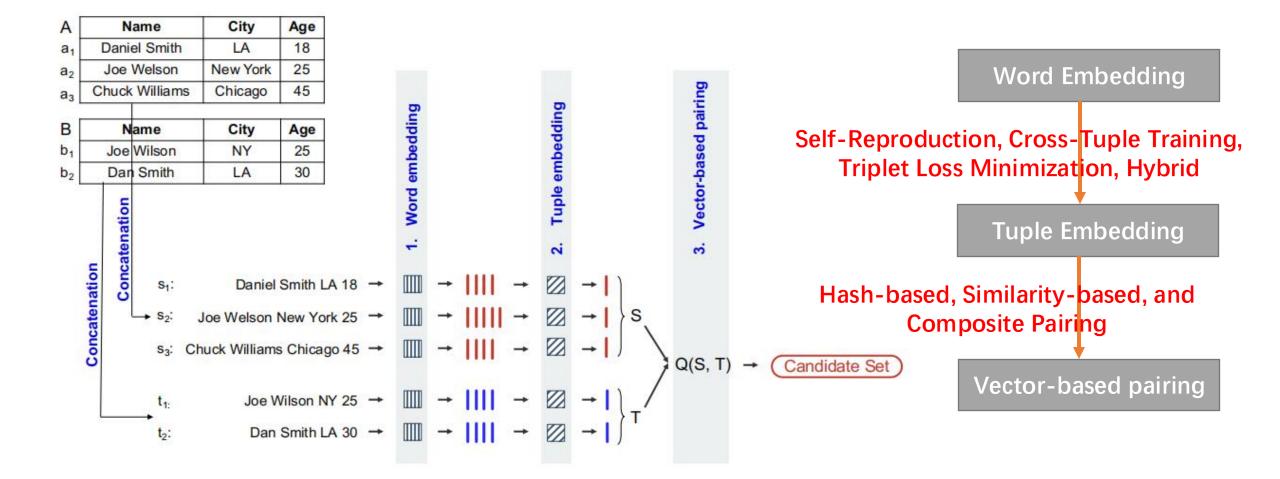


Entity Blocking – SBert [Reimers et al., EMNLP'19]

- Siamese Bert
- Generate tuple embedding
- Cosine similarity
- Better than SOTA embedding methods, but worse than matching models.



Model	STS12	STS13	STS14	STS15	STS16	STSb	SICK-R	Avg.
Avg. GloVe embeddings	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
Avg. BERT embeddings	38.78	57.98	57.98	63.15	61.06	46.35	58.40	54.81
BERT CLS-vector	20.16	30.01	20.09	36.88	38.08	16.50	42.63	29.19
InferSent - Glove	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
Universal Sentence Encoder	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT-NLI-base	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SBERT-NLI-large	72.27	78.46	74.90	80.99	76.25	79.23	73.75	76.55
SRoBERTa-NLI-base	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.21
SRoBERTa-NLI-large	74.53	77.00	73.18	81.85	76.82	79.10	74.29	76.68



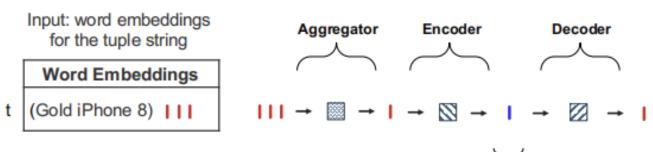
• SFT:

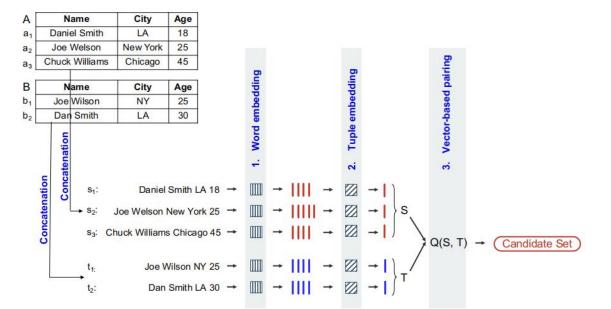
(1) Averaged averaging; (2) PCA

$$\mathbf{f}(\mathbf{w}) = \mathbf{a}/(\mathbf{a} + \mathbf{p}(\mathbf{w}))$$
$$\mathbf{u}_t = \mathbf{v}_t - \mathbf{p}\mathbf{p}^T\mathbf{v}_t$$

Auto-Encoder

Self-Reproduction, do not need labeled data





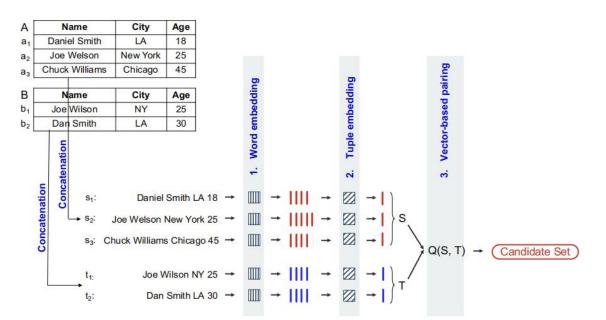
SIFT + Encoder-Decoder (FFN)

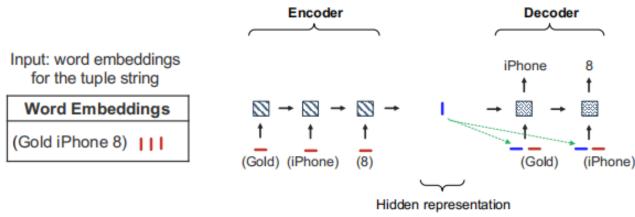
Hidden representation

• Trans-encoder

Transformer as encoder/decoder

• Seq2seq LSTM-RNN as encoder/decoder





Entity Blocking – Trans-encoder [Thirumuruganathan et al., VLDB'21]

- Transformer [Vaswani et al. NeurIPS17']
 - Scaled Dot-Product Attention

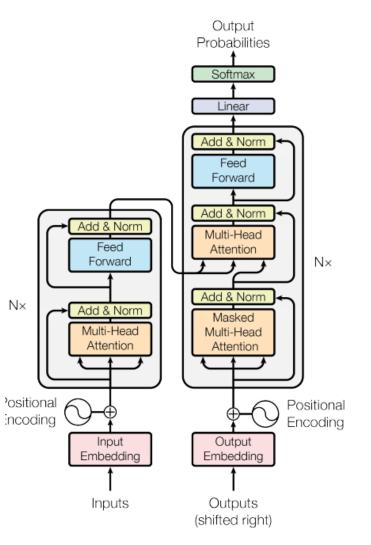
 $\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

• Multi-head attention

MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^{O} where head_i = Attention $(QW_{i}^{Q}, KW_{i}^{K}, VW_{i}^{V})$

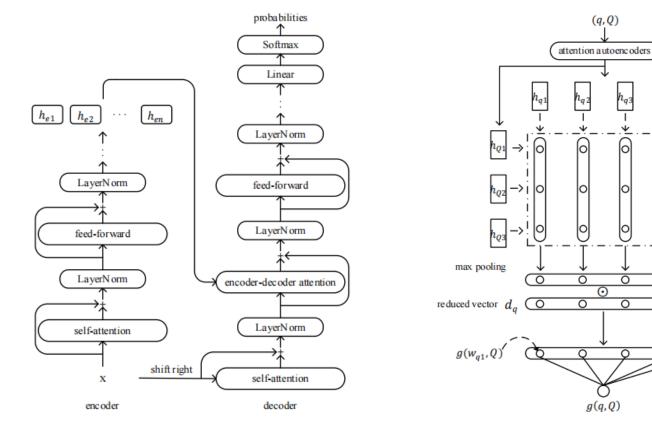
- Position-wise Feed-Forward Networks
- Positional encoding

The final representation is the embedding of [CLS]



Entity Blocking – AttentionAE [Zhang et al., AAAI'18]

Attention Autoencoder



0

0

 $\overline{\mathbf{O}}$

О

g(q,Q)

(q,Q)

ဂြ

lO

0

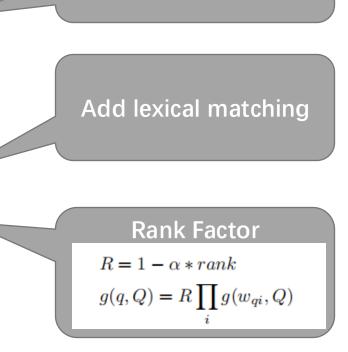
0

6

0

 $\overline{\mathbf{0}}$

rank factor



Similarity based on

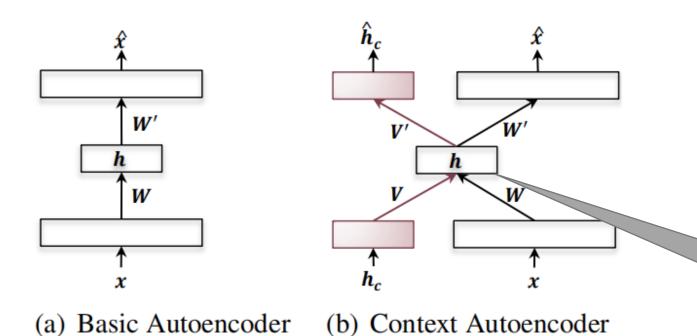
hidden representation

Attention Autoencoder

Entity Blocking – CSAE [Zhang et al., AAAI'18]

• CSAE

Add context information into AE



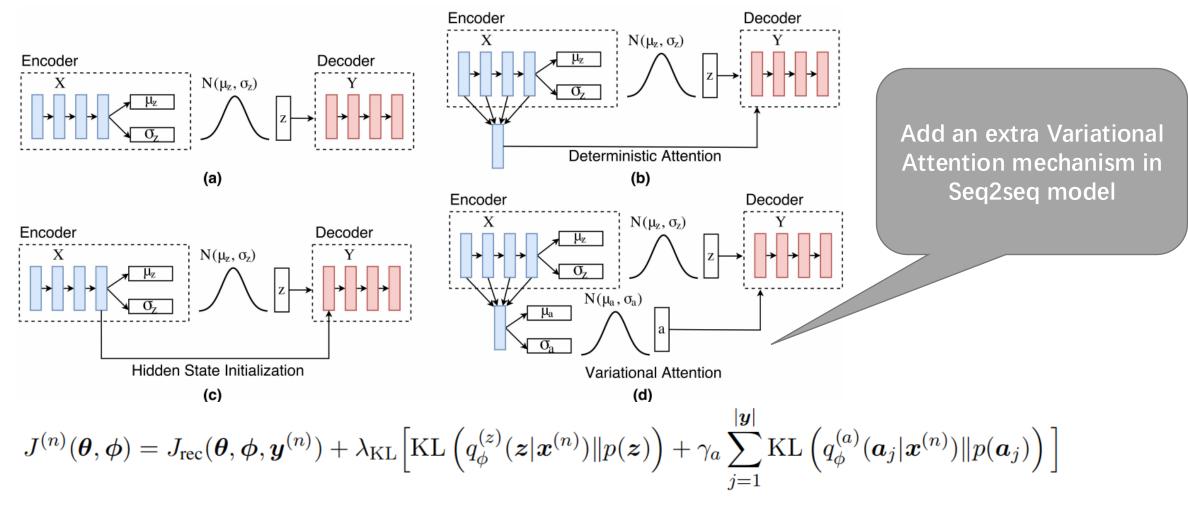
$$\begin{split} l(\mathbf{x}, \mathbf{h}_c) &= ||\mathbf{x} - \hat{\mathbf{x}}||^2 + \lambda ||\mathbf{h}_c - \hat{\mathbf{h}}_c||^2\\ \min_{\mathbf{\Theta}} \sum_{i=1}^n l(\mathbf{x}^{(i)}, \mathbf{h}_c^{(i)})\\ \mathbf{\Theta} &= \{\mathbf{W}, \mathbf{W}', \mathbf{V}, \mathbf{V}', \mathbf{b}_{\mathbf{h}}, \mathbf{b}_{\hat{\mathbf{x}}}, \mathbf{b}_{\hat{\mathbf{h}}_c}\}, \end{split}$$

Reconstruction loss of both the original data and context information

h is the dense representation of the original data and context

Entity Blocking – VED [Bahuleyan et al., COLING'18]

• Variational Encoder-Decoder

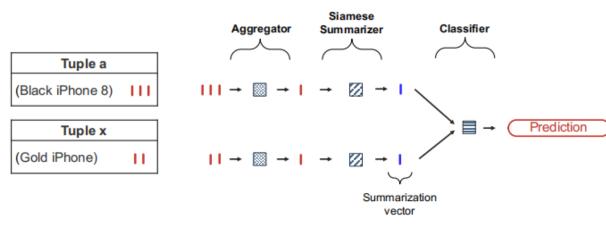


CTT

Automatically generate labeled data

(1)**Positive**: synthetic matching (randomly select a subset of words, at least 60% overlap)

(2)**Negative**: Randomly select one tuple.



A	N	ame	City	Age									
a	Dani	el Smith	LA	18									
a ₂	Joe	Welson	New York	25									
a3	Chuck	Williams	S Chicago	45		-						ing	
в [N	ame	City	Age		Word embedding				Tuple embedding		d pair	
b ₁	Joe	Wilson	NY	25		pě				be		sec	
b ₂	Dar	Smith	LA	30		E				em		-pa	
	Concatenation					1. Word				2. Tupl		3. Vector-based pairing	
	Son Son	S ₁ :	Daniel	Smith L	A 18 →		\rightarrow		\rightarrow		→)		
	Concatenation	→ s ₂ :	Joe Welson I	New Yo	rk 25 →		-	1111	-		→		
	Con	S ₃ :	Chuck Williams	s Chicag	go 45 →		→		→		-)	Q(S, T)	→ Candidate Set
		t _{1:}	Joe V	Vilson N	Y 25 →		→	IIII	→		→) _ /		
		t ₂ :	Dan	Smith L	A 30 →		-	IIII	-	\square	→ 		

• Cross Entropy loss e.g., DeepER [Ebraheem et al., VLDB'18]

Triple loss

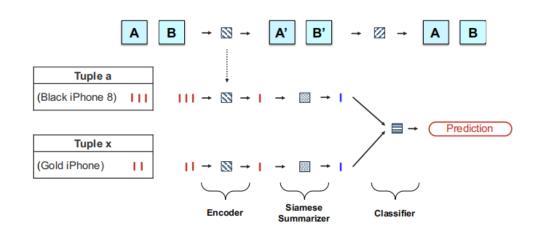
 $\max\left(||Emb(x) - Emb(y)||^{2} - ||Emb(x) - Emb(z)||^{2} + \alpha, 0\right)$

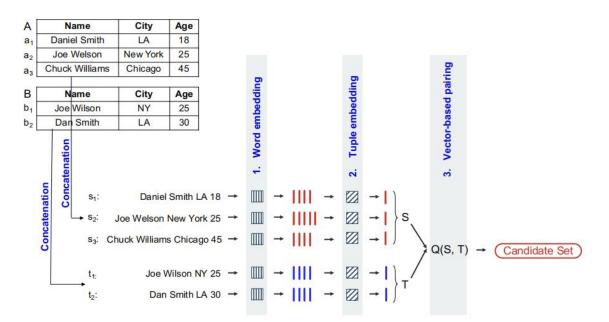
• CTT-cosine

Replace the classifier with **Cosine similarity**.

Hybrid

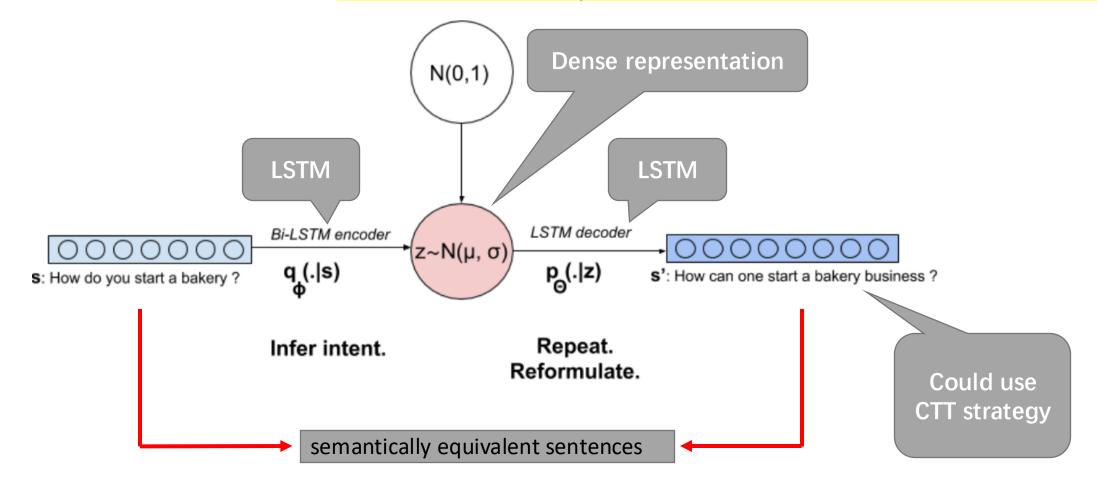
Combine CCT and AE. Replace the aggregator of CCT **with the encoder of AE**.





Entity Blocking - VAR-Siamese [Michel Deudon., NeurIPS'18]

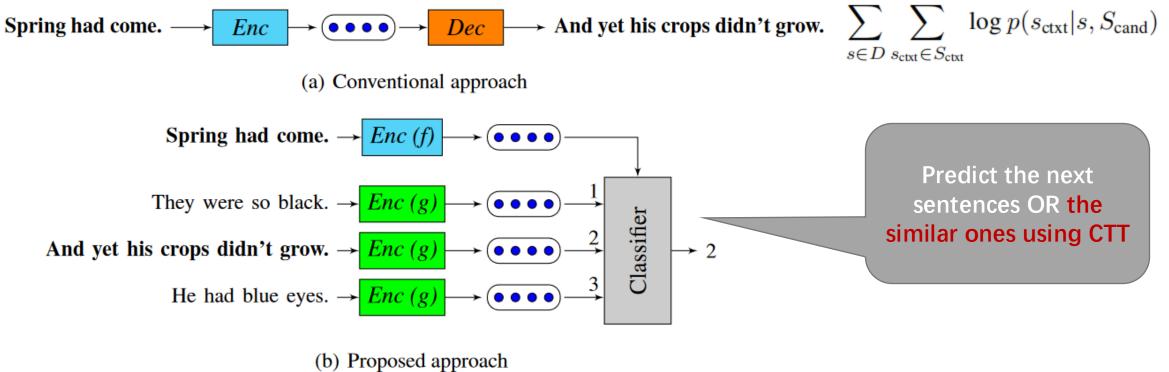
• Variational autoencoder $-L_{\theta;\phi}(s,s') = -E_{q_{\phi}(z|s)}[\log p_{\theta}(s'|z)] + \kappa KL(q_{\phi}(z|s)||N(0,I))$



Entity Blocking – QT [Logeswaran et al., ICLR'18]

• Replace the decoder with a **classifier**

$$p(s_{\text{cand}}|s, S_{\text{cand}}) = \frac{\exp[c(f(s), g(s_{\text{cand}}))]}{\sum_{s' \in S_{\text{cand}}} \exp[c(f(s), g(s'))]}$$



Entity Blocking – Fast Query Processing

- Problem: Given two large relational tables A and B, and Representation model Repr(), how to efficiently find all satisfied tuple pairs ?
- Algorithm:

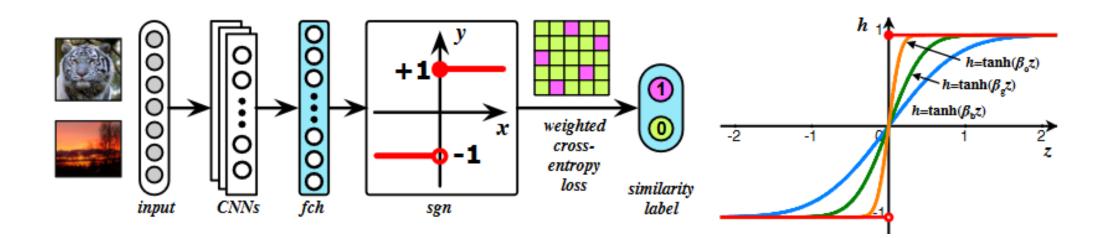
Step 1. Transform each tuple to the embedding use Repr().

Step 2. Cosine similarity Join between A and B

- Locality-Sensitive-Hashing (LSH)
- Product Quantization (PQ)
- Faiss, Annoy, Hnswlib, etc.

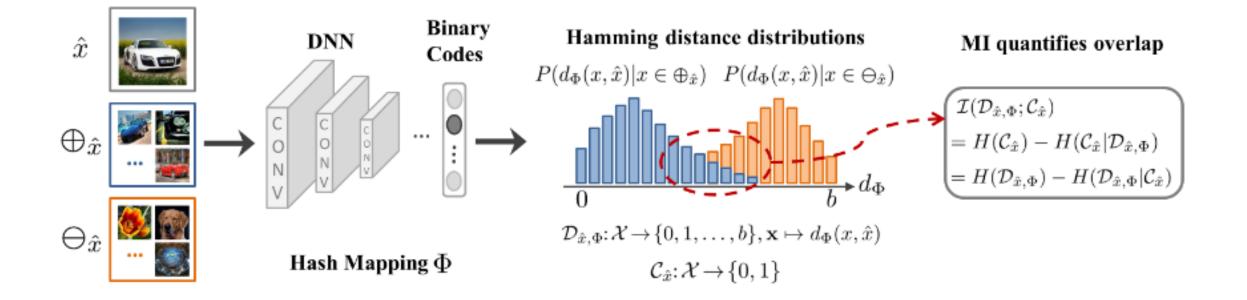
Entity Blocking – Learn to hash

- Instead of tuple embedding, learn a high-dimensional binary vector
- Widely adopted in **CV**
- Case I: HashNet [Cao et al. CVPR17']
 - TanH activation function
 - Learning with Continuation



Entity Blocking – Learn to hash

- Instead of tuple embedding, learn a high-dimensional binary vector
- Widely adopted in **CV**
- Case II: MIHash [Cakir et al. PAMI18']



Entity Blocking – BERT-ER [B Li, Y Wang, W Wang, et al, AAAI'21]

Matching-aware Blocking

□ Learnable hashing: effective than key-based methods and LSH

$$H(t) = sign(tX)$$
 X: learnable
hyperplanes

 \Box Signum function is not differentiable \rightarrow L2 Relaxation: replace the binary constraint with a regularizer

$$H(t) = sign(tX) \qquad H'(t) = tX$$

□ Loss function for blocking

$$L_B^r = \frac{1}{2} y || H^r(t_i), H^r(t_j) ||_2 + \frac{1}{2} (1 - y) \max(m - || H^r(t_i), H^r(t_j) ||_2, 0) + \gamma(||| H(t_i) |-1||_1 + ||| H(t_j) |-1||_1),$$

L2 distance
Contrastive loss: prevent very dissimilar pairs from the computation
Regularizer for binary constraint

Entity Blocking – BERT-ER [B Li, Y Wang, W Wang, et al, AAAI'21]

Matching-aware Blocking

Hyperplanes Orthogonalization: ensure independency of hash bits and being isometry

Regularization-based approach

$$R_{o} = \|XX^{\top} - \mathbf{I}\|_{F}$$

SVD-based approach: decompose X using SVD, and replace X with orthogonal matrix US

$$SVD(X) = USV^{\mathsf{T}}$$

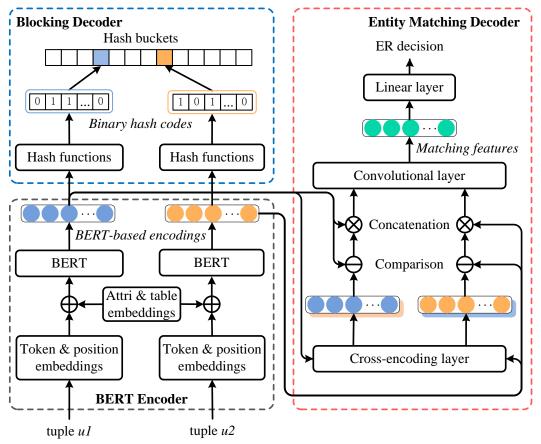
 $X' \leftarrow US$

Entity Blocking – BERT-ER [B Li, Y Wang, W Wang, et al, AAAI'21]

Final framework

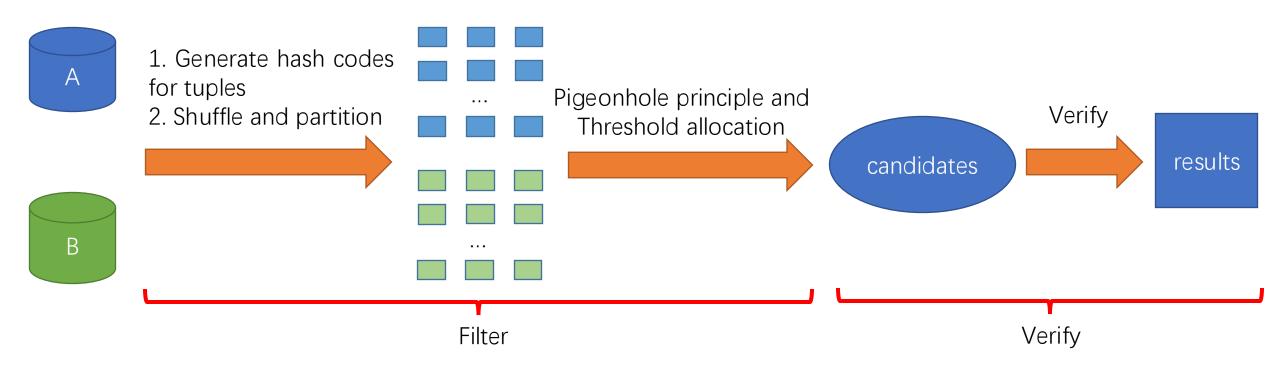
□ The base is the BERT encoder, shared by two task-specific decoders --

blocking and entity matching.



Entity Blocking – Fast Query Processing

- Problem: Given two large relational tables A and B, and *learn to hash* model Repr(), how to efficiently find all satisfied tuple pairs ?
- Algorithm: GPH [Qin et al. ICDE18', TKDE20']



Entity Blocking

		Learning strategy	Schema- aware	# of instances	Accuracy	Running Time
Rule- based	ApproxDNF [ICDM06']	Supervised	Yes	Few	Not high	Moderate
	BSL/BSL+[AAAI06', IJCAI11]	Supervised	Yes	Few	Not high	Moderate
	Fisher [ICDM13']	Unsupervised	Yes	None	Not high	Moderate
	EM-GBF [VLDB17']	Supervised	Yes	A Few	Moderate	Moderate
	DNF-BSL [2015]	Unsupervised	No	None	Not high	Moderate
	HyMD [TODS20']	Mining	Yes	A few	Moderate	Moderate
ML-based	Smurf [VLDB19']	Supervised	Yes	A few	High	Not fast
	Meta-Blocking [VLDB14']	Supervised	No	A few	Moderate	Moderate

Entity Blocking

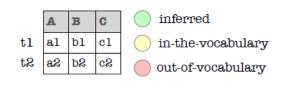
		Learning strategy	# of instances	Accuracy	Pairwise	Running Time
DL	DeepER [VLAB18']	Supervised	A lot	High	LSH	Fast (k-NN)
	Sbert [EMNLP19']	Supervised	A lot	High	Cosine	Fast (k-NN)
	Autoencoder / Trans- encoder [VLDB21']	Unsupervised	None	Moderate	Cosine	Fast (k-NN)
	CSAE [ACL16'] + cosine	Semi- supervised	A few	Moderate	Cosine	Fast (k-NN)
	SIF, CTT(-Cosine), Hybrid [VLDB21]	Supervised	A lot	High	Cosine	Fast (k-NN)
	QT [ICLR18'] + CTT	Supervised	A lot	High	Cosine	Fast (k-NN)
	VAR-Siamese [NeurIPS18'] + CTT	Semi- supervised	A few	Moderate	Cosine	Fast (k-NN)
	Bert-ER [AAAI21']	Supervised	A lot	High	Hamming	Very fast (k-NN, threshold)

Entity Matching – Problem Definition

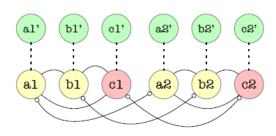
- **Problem Definition**: Fine-comparing (after blocking) tuple pairs to find co-references, i.e., binary classification problem.
- Evaluation
 - Precision
 P=TP/(TP+FP)
 - Recall R=TP/(TP+FN)
 - F1 F1=2*P*R/(P+R)

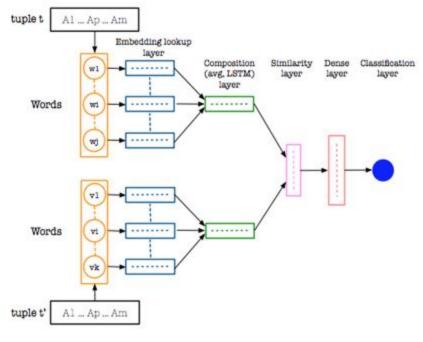
Entity Matching – DeepER [Ebraheem et al., VLDB'18]

- First DL-based ER model
- Interaction: Attribute comparison
- **Comparator:** Cosine
- Encoder: LSTM
- Embedding: GloVe
- For OOV word -- Vocabulary Retrofitting



values in the same tuple
 values from the same attribute
 retrofitted



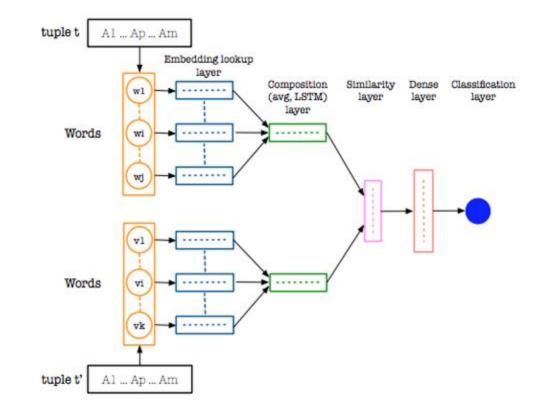


Entity Matching – DeepER [Ebraheem et al., VLDB'18]

- First DL-based ER model
- Interaction: Attribute comparison
- Comparator: Cosine
- Encoder: LSTM
- Embedding: Glove
- Outperforming SOTA non-deep solution Magellan with a big margin

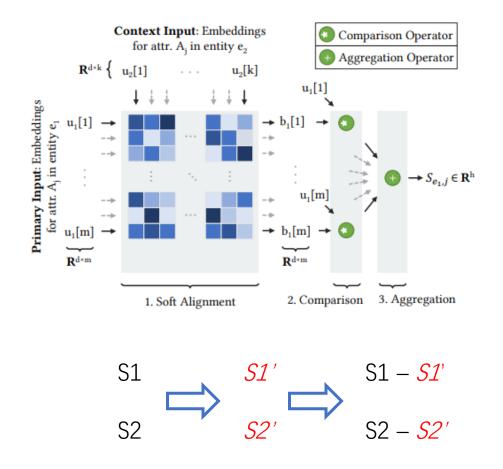
Performance

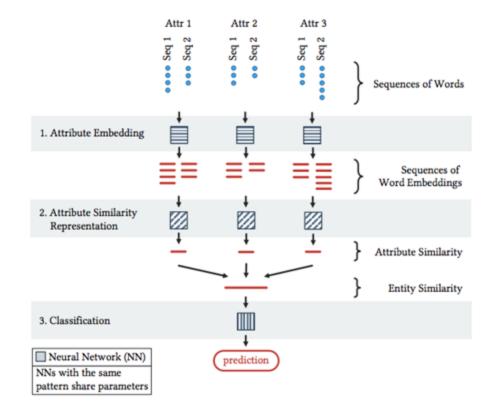
- F-1: >96% on Amazon-Google Dataset w. 1,300 positive cases
- Magellan F-1:87.68% (~10 pts gap)



Entity Matching – DeepMatcher [Mudgal et al., SIGMOD'18]

• Interaction: Cross-encoded attribute comparison



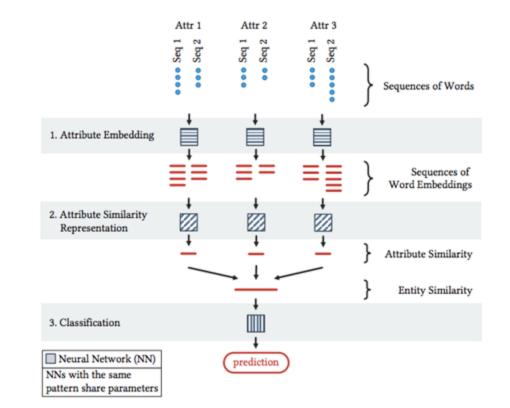


Entity Matching – DeepMatcher [Mudgal et al., SIGMOD'18]

- Interaction: Cross-encoded attribute comparison
- **Comparator:** Subtraction
- Encoder: RNN, LSTM
- Embedding: fastText (no big differences w. GloVe)
- Outperforming SOTA non-deep solution Magellan with a big margin

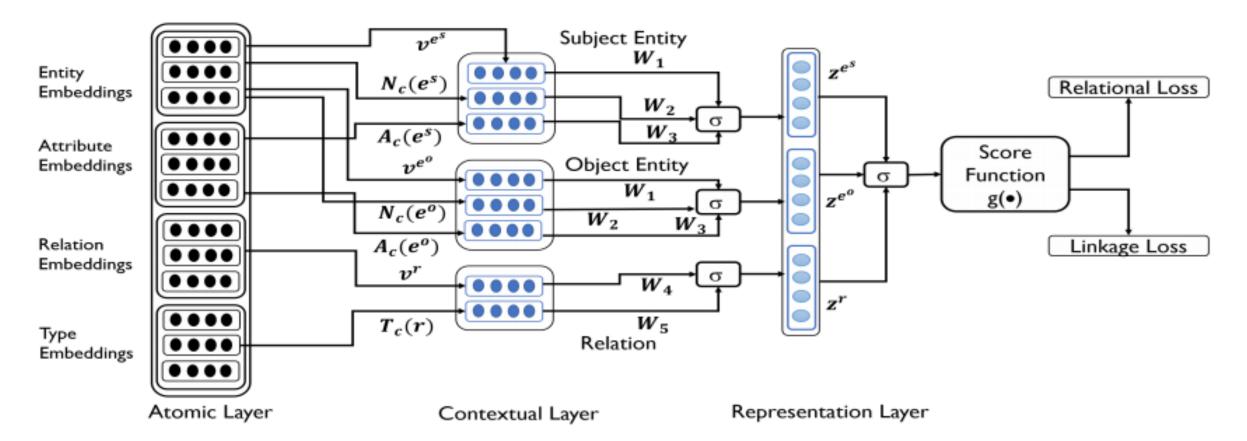
Performance

- F-1: >69.3% on Amazon-Google (refined) w. 1,300 positive cases
- Magellan F-1:49.1% (~20 pts gap)



Deep Learning Models [Trivedi et al., ACL'18]

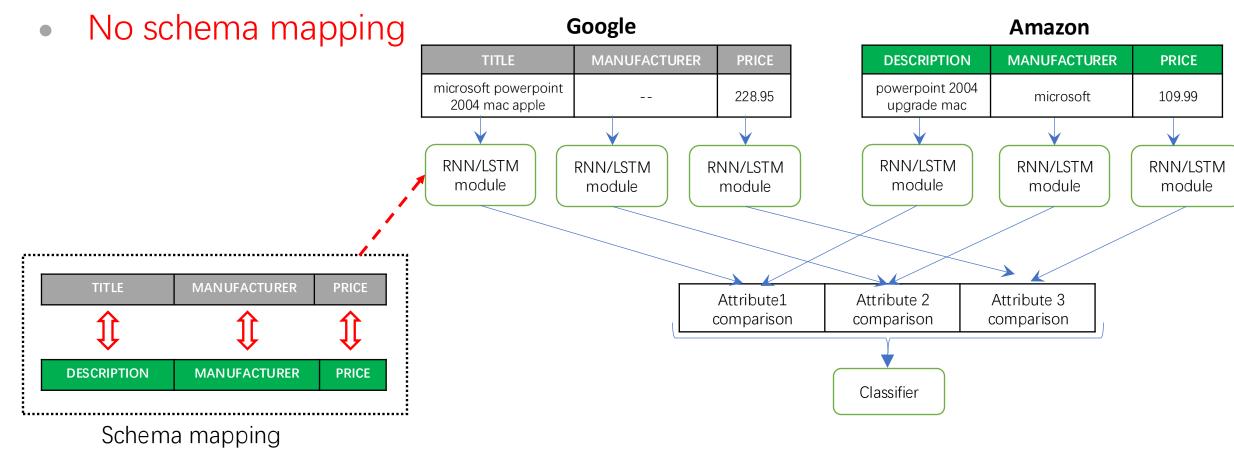
 LinkNBed: Embeddings for entities as in knowledge embedding



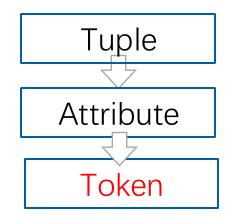
Deep Learning Models [Trivedi et al., ACL'18]

- LinkNBed: Embeddings for entities as in knowledge embedding
- Performance better than previous knowledge embedding methods, but not comparable to random forest
- Enable linking different types of entities

Interaction: Graph-encoded token comparison



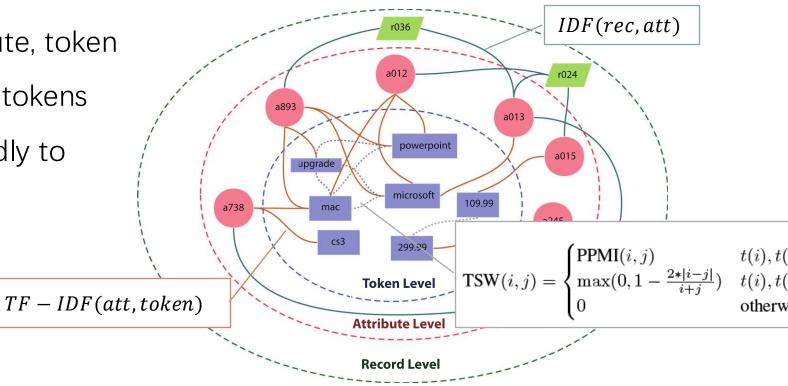
- Interaction: Graph-encoded token comparison
 - No schema mapping
 - Finer-grained
 - Share information between attributes





• ER-Graph

- Inclusion of tuple, attribute, token
- Co-occurrence between tokens
- Type sensitive be friendly to numerical values
- Two-layer GCN



 $E = \operatorname{ReLU}(\widetilde{A} \operatorname{ReLU}(\widetilde{A}I\Theta^{(1)})\Theta^{(2)})$

- Interaction: Graph-encoded Token
- **Comparator:** Subtraction
- Encoder: GCN
- Embedding: Glove or learn from scratch
- Aggregation Layer
 - bilateral matching [Wang et al, ICLR 2017]

 $r^{(P \to Q)} = \text{CNN}(M^{(P \to Q)})$ $R = [r^{(P \to Q)}; r^{(Q \to P)}]$

- Prediction layer
 - two-layer dense HighwayNet

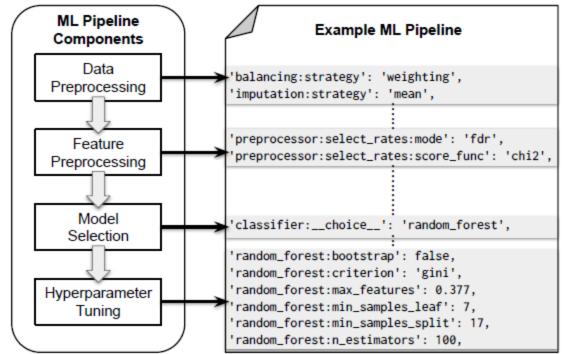


- Interaction: Graph-encoded token comparison
- Encoder: GCN
- **Embedding:** Glove or learn from scratch
 - Performance
 - F-1: >68% avg on Amazon-Google (refined) w. 1,300 positive cases
 - DeepMatcher F-1:60% avg (~8 pts gap)

Model		Amazon-Google		BeerAdvo-RateBeer			
WIOUEI	P (%)	R (%)	F1 (%)	P (%)	R (%)	F1 (%)	
Magellan (Konda et al. 2016)	67.7	38.5	49.1	68.4	92.9	78.8	
RNN (Mudgal et al. 2018)	59.33 ± 4.40	48.12 ± 6.06	52.77 ± 3.07	74.82 ± 4.48	70.00 ± 15.36	71.34 ± 7.53	
Hybrid (Mudgal et al. 2018)	58.82 ± 5.43	64.02 ± 12.36	60.51 ± 4.73	73.44 ± 9.43	70.00 ± 8.11	71.08 ± 5.80	
GraphER	69. 11± 1.70	67.13 ± 2.26	$\textbf{68.08} \pm \textbf{1.50}$	79.34 ± 7.84	80.81 ± 5.41	$\textbf{79.71} \pm \textbf{2.16}$	

Entity Matching – AutoML-EM [Wang, Pei, et al., ICDE'21]

- Main idea: hand-off EM
 - Treat EM pipeline development as a solvable search problem with AutoML
- Interaction: Tuple features comparison
- Backbone: AutoML
- Searching Algorithm
 - Input: search space (e.g., a set of components); evaluation metric (e.g., F1); a time budget
 - Output: the best pipeline



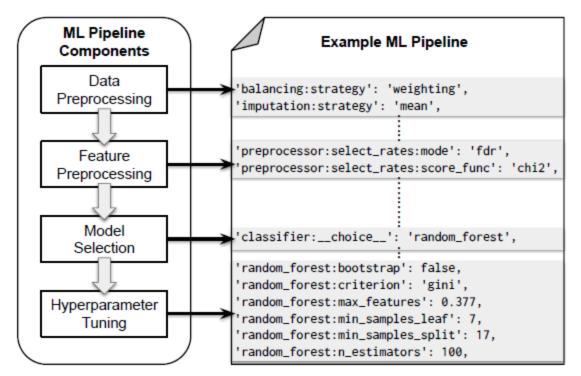
Entity Matching – AutoML-EM [Wang, Pei, et al., ICDE'21]

Active Labelling

- Human-in-the-loop
- In each round, selects a set of unlabeled pairs with lowest confidence scores and asks humans to label them

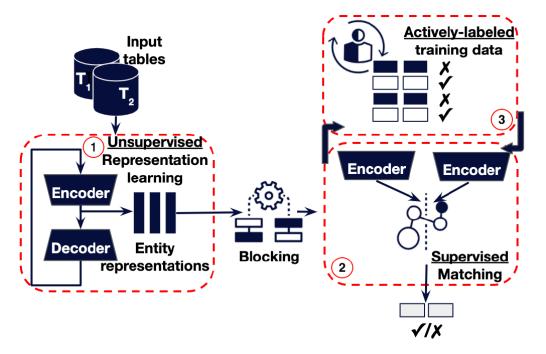
Performance

- F-1: 66.4% on *Amazon-Google (refined)* w. 1,300 positive cases
- DeepMatcher F-1:69.3%



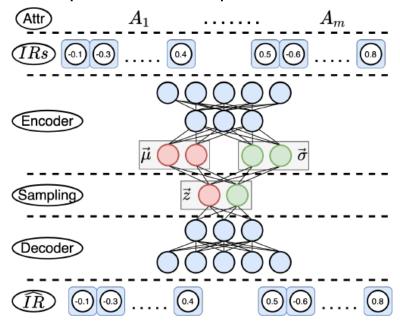
Entity Matching – VAER [Bogatu, Alex, et al, ICDE'21]

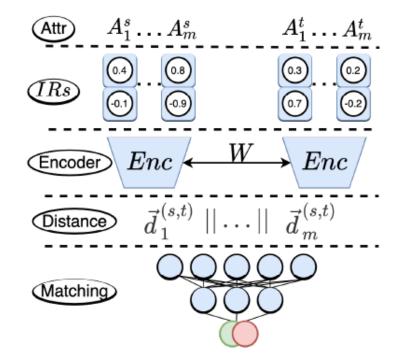
- Interaction: Tuple comparison
- **Comparator:** 2–Wasserstein distance
- Encoder: Variational Auto-Encoders (VAE)
- **Embedding:** LSA (Latent semantic analysis)



Entity Matching – VAER [Bogatu, Alex, et al, ICDE'21]

- Interaction: Tuple comparison
- **Comparator:** 2–Wasserstein distance
- **Encoder:** Variational Auto-Encoders (VAE)
- Unsupervised Representation learn compressed encoding using VAE



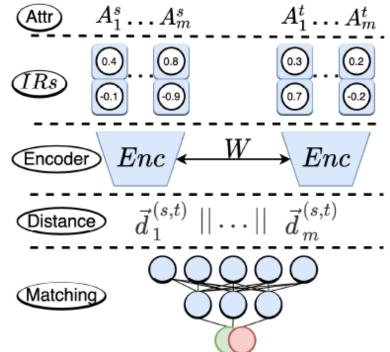


Entity Matching – VAER [Bogatu, Alex, et al, ICDE'21]

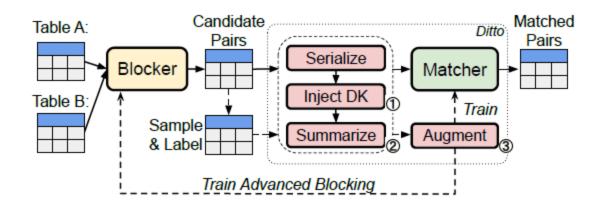
- Interaction: Tuple comparison
- **Comparator:** 2–Wasserstein distance
- **Encoder:** Variational Auto-Encoders (VAE)
 - Unsupervised Representation learn compressed encoding using VAE

Performance

- Reduce data labeling
- Achieving 90% or more F1 score with less actively labeled samples

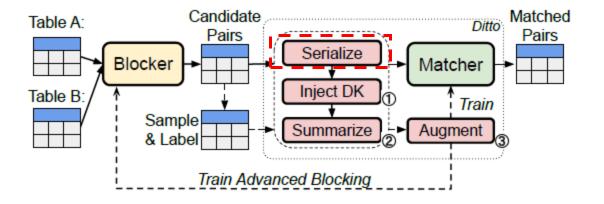


- Interaction: Synchronous deep interaction
- Encoder: Pre-trained LMs
- Embedding: Deeply contextualized embedding



Serialize

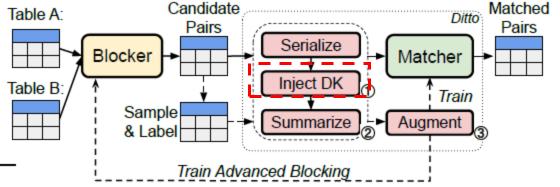
- Special token [COL]: attribute's name [VAL]: values
- Pack tuple pair



serialize(e) ::= [COL] attr₁ [VAL] val₁ . . . [COL] attr_k [VAL] val_k,

serialize(e, e') ::= [CLS] serialize(e) [SEP] serialize(e') [SEP],

- Inject Domain knowledge
 - Entity Span



Entity Type	Types of Important Spans		
Publications, Movies, Music	Persons (e.g., Authors), Year, Publisher		
Organizations, Employers	Last 4-digit of phone, Street number		
Products	Product ID, Brand, Configurations (num.)		

- Span Normalization
 - E.g., VLDB journal = VLDBJ

- Inject Domain knowledge
 - Entity Span

Table A:	Candidate Pairs Ocker + Matcher Sample & Label + Summarize 2 Augment 3
	Train Advanced Blocking

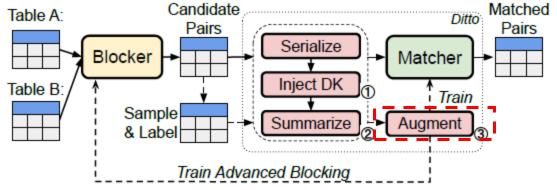
Entity Type	Types of Important Spans		
Publications, Movies, Music	Persons (e.g., Authors), Year, Publisher		
Organizations, Employers	Last 4-digit of phone, Street number		
Products	Product ID, Brand, Configurations (num.)		

- Span Normalization
 - E.g., VLDB journal = VLDBJ

Summarize

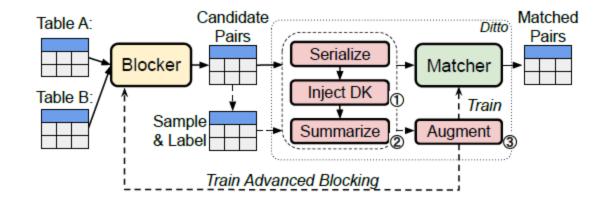
• Pick top-512 tokens w.r.t. TF-IDF

- Data Augmentation (DA)
 - More training data, more robust model



Operator	Explanation		
span_del	Delete a randomly sampled span of tokens		
span_shuffle	Randomly sample a span and shuffle the tokens' order		
attr_del	Delete a randomly chosen attribute and its value		
attr_shuffle	Randomly shuffle the orders of all attributes		
entry_swap	Swap the order of the two data entries e and e'		

- Interaction: Synchronous deep interaction
- Encoder: Pre-trained LMs
- Embedding: Deeply contextualized embedding
- With RoBERTa as the back-bone

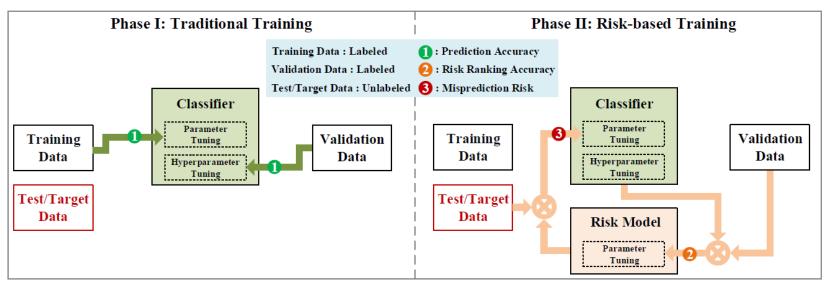


Performance

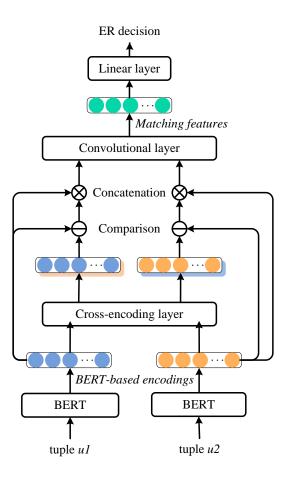
- F-1: 75.58% avg on Amazon-Google (refined) w. 1,300 positive cases
- DeepMatcher+ F-1:70.7% avg (~5 pts gap)

Entity Matching – Risk [Chen, Q el al, JMLR'21]

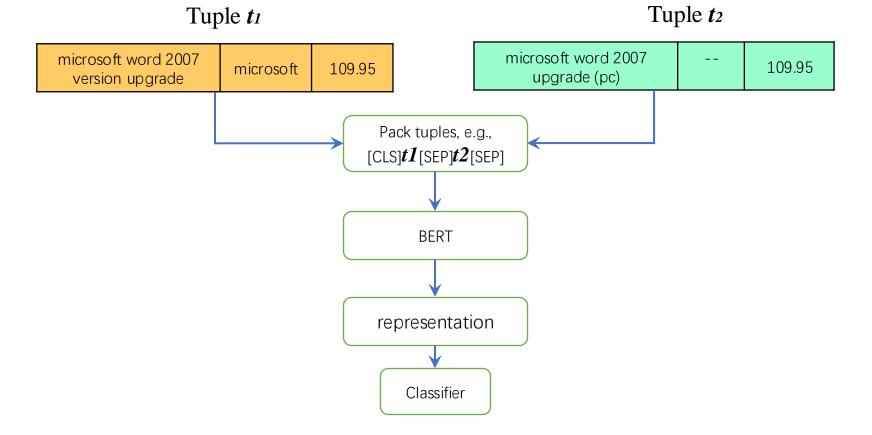
- Main idea: Learning classification risk (residual)
 - Similar idea for gradient boosting
- **Encoder:** DeepMatcher or DITTO (base learner)
 - Risk leaner: a simple linear layer with manual risk features (e.g, r1[year] = r2[year])
 - Outperforming base learner with only 10% to 30% training data



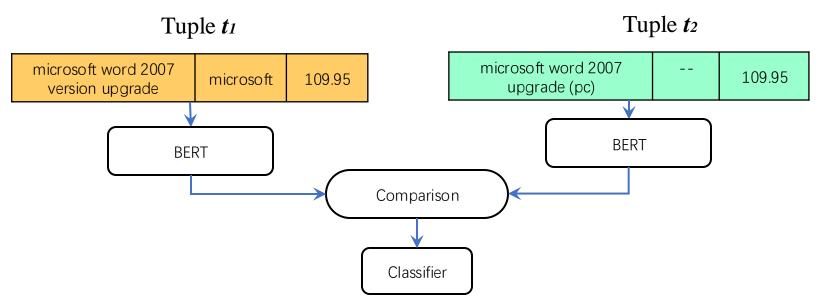
- Current SOTA
- Interaction: Asynchronous deep interaction
- Encoder: BERT
- **Embedding:** Deeply contextualized embedding



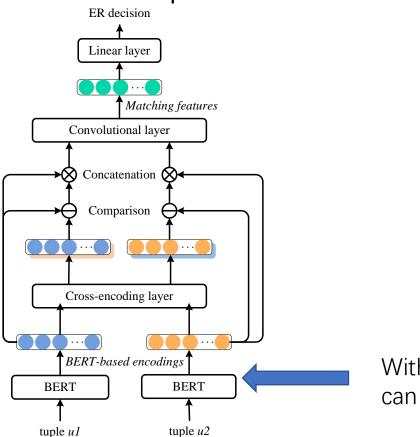
- Interaction: Asynchronous deep interaction
 - DITTO embeds **pair** *not* **tuple**



- Interaction: Asynchronous deep interaction
 - DITTO embeds **pair** *not* **tuple** end-to-end blocking unable
 - BERT-ER make it **Siamese** ready for blocking



• Interaction: Asynchronous deep interaction



With individual encodings, we can integrate blocking module

• Core component Delayed and Enhanced Alignment

$$e_{i} = \text{PFFN}(s_{i}^{I} + s_{i}^{C}) \approx \underset{\text{(a) representation}}{\text{PFFN}(s_{3}^{I})} + \underset{\text{(b) interaction}}{\text{PFFN}(s_{3}^{C})}$$

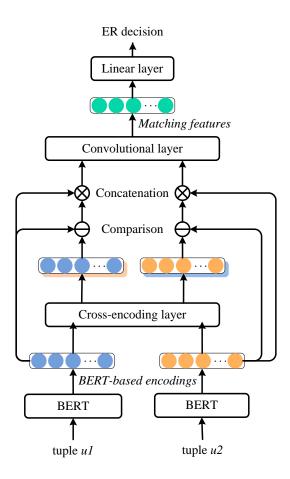
• Implicit cross-encoding features -> Explicit comparison features

- Add representation and alignment features -> Concatenate (separating parameters) $E_{u1} = E_{u1}^{I} + E^{u1 \rightarrow u2}$ $E_{u1} = [E_{u1}^{I}; E^{u1 \rightarrow u2}]$
- Single-gram features -> Multi-gram features $M_{\mu l} = \operatorname{Conv}(E_{\mu l})$

- Interaction: Asynchronous deep interaction
- Encoder: BERT
- **Embedding:** Deeply contextualized embedding

Performance

- F-1: 75.3% on Amazon-Google (refined) w. 1,300 positive cases
- BERT F-1:73.1 % (~2 pts gap)
- With Fast blocking ~300X speed-up



Entity Matching

			On Which Level Tuples Interact?				
			Tuple	Attribute	Token	Cross-Encoding	Siamese
Encoder	Supervised	LSTM		DeepER [VLDB'18]		×	\checkmark
				DeepMatcher [SIGMOD'18]		\checkmark	\checkmark
		GCN			GraphER [AAAI'20]	\checkmark	\checkmark
		Pretrained LMs			BERT-ER [AAAI'21]	\checkmark	\checkmark
					DITTO [VLDB'21]	\checkmark	×
	Unsupervised	VAE	VAER [ICDE'21]			×	\checkmark
	Hand-off		AutoML-EM [ICDE'21]			×	×
	Ensemble			RISK [JMLR'21]		\checkmark	\checkmark

THANK YOU!