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Introduction

Exact Query Processing
Approximate Query Processing
Selectivity Estimation

Open Problems



Approximate Query Processing
N

o Space Partitioning-based
o Tree
o Encoding
o Locality Sensitive Hashing

1 Graph-based Methods

Notes:
* Recent works mainly in the Database area

* Prefer ease of exposition over rigor

« Categorization is not fixed /unique



Space Partitioning-based

Partition the whole space into partitions that cover
the whole space

Further divided into 3 sub-categories:
Tree-based

Encoding-based

Locality sensitive hashing-based



Tree-based
I

0 Hierarchically partition the whole space into
partitions that covers the whole space

7 A natural idea in low-dimensional space

m disioinf: kd-tree - Randomized kd-trees and variants

O overlapping: R-tree - M-tree, Cover Tree, Spill tree

Problem:

Non-trivial modification needed to handle high-dimensional data



kd-tree Examples (low dimensional
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Step 1

-6 4
7 Mapping
o1 Random top-k dimensions: Randomized kd-tree
o PCA: PCA-tree
o1 Random Rotation: NKD-Tree
o1 Optimized Sparse Rotation: TP-Tree

o1 Random Projection: RP-Tree

Main idea:
maximize the variance before the split



Step 2

Split
Dim 1

Median split: (randomized) KD-tree, PCA-tree, ...

Perturbed split: RP-tree

Overlapping split: Spill Tree [DS15]
Virtual spill tree: “Spill” at query time

Dim 2:
Linear split

Non-linear split: [DIRW20]

median split perturbed split

overlapping split
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Steps 3 & 4

(Optional) Tree = Forest
Can be applied to all kinds of trees

Can use best-first search to coordinate the searches

When to stop?
Guaranteed NN found

Bounded cost
Judged by a prediction model [LZAH20, GTEB+20]

Query & Initial Estimate Progressive Results Final Result (1-NN)

26 msec (1 leaf) 1.1 sec (1024 leaves) 3.8 sec (4096 leaves) 15.7 sec (16384 leaves) 75.2 sec (110203 leaves)
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1NN probability = 1% 1NN probability = 52% 1NN probability = 94% 1NN probability = 98% 1NN probability = 100%



RP-tree Example
o

kd-tree rp-tree




Annoy Example
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Erik Bernhardsson, “Approximate nearest
neighbor methods and vector models”, 2015



Trees with Overlapping Partitions
N

- Based on the metric property Able to index objects in a
-Euclid
o1 (M)VP-tree, M-tree non-Euclidean space

-1 Based on intrinsic dimensionality

o1 Cover Tree
o “Spill”
O Spill for data: Spill Tree
O Spill for query: Virtual Spill Tree



Metric Property

7 Inference on the lower & upper bound of dist(u, v)

Triangular inequality

Ptolemaic inequality

I

Ir

Triangular inequality:
* Lower and upper bounds
of dist(o, q)

c.f., LSH (later)
* gives the full distribution

of dist(o, q)




Ptolemaic inequality

AB-CD+ BC-DA> AC-BD

https: / /en.wikipedia.org /wiki/Ptolemy%27s_inequality



Variants

Reference points
All DB objects: AESA

Organized into a hierarchical fashion = metric tree indexes

Many work /heuristics to select a good subset

[Diversion] Use rank() instead of dist() of reference
points
Permutation index [NBNT16, ...]

dist(u, v) is small = d(perm(u), perm(v)) is also small



PP-Index

Order-3 Voronoi Diagram
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http: / /www.esuli.it /publications /PP-Index-slides.pdf




Intrinsic Dimensionality

One of the metrics is Expansion Constant

Smallest ¢ such that | Bqll(@ %E)I < c*| Bqll@, E) |, Vz
Cover Tree

O(n) space

O(c® * nlog(n)) construction and update time

O(c'? * #log(n)) exact NN query time
CO(l) logA 4 (1/€)O(log c) &-NN query

A (aspect ratio): ratio between largest and smallest
interpoint distance


Wei Wang
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Cover Tree

A node covered
by a pivot data
point (red) with
radius R



Cover Tree

Cover the points
using a child pivot
with radius R/2



Cover Tree

(oo

Repeat by picking
the child pivot
outside the
previous covers



Cover Tree

= Nesting
o Cl); Ci-1) U black nodes
o Ci-1); colored nodes
1 Covering
o dist(u®, vi-1) < 21
0 Separation
o dist(ul-1), vi-1)) > 2i

fan-out of any node < ¢*


Wei Wang


Encoding-based
I

o Learning to hash

1 Product Quantization

1 Hierarchical k-means



Learning to Hash

22 f
1 ldea:

1 Embed RY to a k-dimensional Hamming cube while
minimizing some objective function (neighborhood
preservation or distance distortion)

mx. ERI=>ze€ {0, 1} =» Partition the space into 2* regions

o E.g., Spectral hashing:

Minimize avg Hamming distance

o Minimize Zii Wii "Zi - Zi" between neighboring points
® and other conditions (max utilization of bits +
uncorrelatedness)

o Where W;; = exp(-llx; - x;lI? / £2)

- Many other variants

c.f., https:/ /learning2hash.qgithub.io and https:



Coding based on k-means

Partition the whole space
info n regions by n-
means =2 Voronoi

Can be relaxed using k
<n
However, still cannot

afford a very large k
(why¥¢)




Solution 1: PQ (Product Quantization)

24|
7 Index:

Tiny space consumption: ~1/32 size of the data

Partition the d dims into L partitions

k-means clustering within each partition

{C1,i} X {C2,i} X ... {CLli} iOin'l' cenfers
Quanﬁzaﬁon

Each point encoded as the closest joint center

- Query Processing:

Repeat

® Find the closest joint center

m Compute the asymmetric distance (via table lookup)
Optimizations:

® Multi-index-based (best with only 2 partitions)
m PO FAact [~Arn TAKSKTERET PORETICC17T7]



Illustration of PQ
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Comparisons

__________VAFile Q.

H#Partitions on  d L = d/log(k)

dimensions

Codebook typically linear, equi- non-linear, “equi-
width partitioning of  width” partitioning of
the domain the domain

Query Brute-force on the Best-first search on the

Processing encoded data encoded data



Solution 2: Hierarchical k-Means Tree

PQ can be deemed as an approximate version of
(L*k)-means quantization

Hierarchical k-Means Tree (as in FLANN) recursively
partition the data using k-means clustering using a

small k

Special case: hierarchical 2-means trees


Wei Wang


Figure 1: Projections of hierarchical k-means trees constructed using the same 100K SIFT features dataset with different
branching factors: 2, 4, 8, 16, 32, 128. The projections are constructed using the same technique as in (Schindler et al., 2007).
The gray values indicate the ratio between the distances to the nearest and the second-nearest cluster center at each tree level,
so that the darkest values (ratio~1) fall near the boundaries between k-means regions.




