Approximate Query Processing

- Space Partitioning-based
 - Tree
 - Encoding
 - Locality Sensitive Hashing
- Graph-based Methods

Notes:

- Recent works mainly in the Database area
- Prefer ease of exposition over rigor
- Categorization is not fixed/unique

Locality Sensitive Hashing (LSH)

- □ From the persective of <u>collision probability</u>
 - (Ordinary) hash function h:
 - $Pr[h(x) = h(y)] = \varepsilon \text{ if } x \neq y$
 - LSH
 - Pr[h(x) = h(y)] increases with locality
 - Randomness comes from r.v. $h \in H$

```
(r_1, r_2, p_1, p_2)-sensitive [IM98]
```

- $Pr[h(x) = h(y)] \ge p_1$, if $dist(x, y) \le r_1$
- $Pr[h(x) = h(y)] \le p_2$, if $dist(x, y) \ge r_2$

$$Pr[h(x) = h(y)] = sim(x, y) [CO2] too narrow$$

c.f., Cryptographic hash functions

Pr $[h(x) = h(y)] = 2^{-m}$, if

Hamming(x, y) = 1

Locality Sensitive Hashing (LSH)

- Equality search
 - Index: store o into bucket h(o)

Pr[h(q) = h(o)] = 1/B

- Query:
 - retrieve every o_i in the bucket h(q)
 - verify if o_i = q
- LSH

c.f., [PIM12] for the <u>rigorous</u> QP procedure

- $\square \forall h \in LSH$ -family, $\Pr[Q(h(q)) = Q(h(o))] = f(Dist(q, o))$
 - Q(): quantization (not essential)
 - "Near-by" points have more chance of colliding with q than "far-away" points
- □ Similar index & query procedures, with a weak
 probabilistic guarantee
 Repeat to boost the guarantee

LSH Families

- Many are known
 - Arr L_p (0 \leq 2): use p-stable distribution to generate the projection vector
 - For L₂, just use random Gaussian vector
 - Other families exists, e.g., sparse random projection
 - Angular distance (arccos): SimHash
 - Jaccard: minhash (based on random permutation)
 - Hamming:
 - random projection
 - covering LSH

Comments

- New queries can be reduced to known LSH cases
 - Maximum inner product search (MIPS)
 - Set containment
 - Group aggregated query
- Related to various distortion-bounded embedding
 - Edit distance: CGK-embedding to Hamming with O(K) distortion

 Probabilistic, linear mapping from the original space to the projected space

Probabilistic Mapping

- Probabilistic, linear mapping from the original space to the projected space
- □ What about the distances (wrt Q or $\pi(Q)$) in these two spaces?

Probabilistic Distance Tracking Property of the Mapping

- □ ProjDist(P)² ~ Dist(P)² * χ^2_m [SWQZ+14]
 - ProjDist(P)² can be computed (incrementally) from $h_i(P)$ and $h_i(Q)$ due to the linearity of the hash function
 - Can be generalized to other p-stable LSH functions

Probabilistic Distance Tracking Property of the Mapping

LSH provides a probabilistic distance-preserving mapping between the two spaces

Johnson & Lindenstrauss Lemma [JL84] only works for L2 and induces a method that requires more space than LSH [AIR18]

Roadmap

Roadmap

- Practical LSH methods (i.e., linear index complexity)
- Data-dependent LSH methods

New Perspectives

- □ Inference Method
- Access method
- Stopping condition

Inference

```
ProjDist(P)<sup>2</sup> ~ Dist(P)<sup>2</sup> * \chi^2_m
    □ Problem 1:
       □ Given that \frac{ProjDist(P) \leq r}{r}, what can we infer about
          Dist(P)?
                                    Similar to the usual (r_1, r_2, p_1, p_2) definition of LSH
      SRS:
       □ If Dist(P) \leq R, then Pr[ProjDist(P) \leq r] \geq (\Psi_m((r/R)^2))
       ■ If Dist(P) > cR, then Pr[ProjDist(P) \leq r] \leq \Psi_{m}((r/cR)^{2}) = t
    \rightarrow (some probability) at most O(tn) points with ProjDist \leq R
    \rightarrow (constant probability) one of the O(tn) points has Dist \leq R
This solves the so-called (R, c)-NN queries \rightarrow returns a c<sup>2</sup> ANN
```

- Using another algorithm & proof → returns a c-ANN
 - Inference requires <u>precise & complete</u> information of the projections

Likely ($\geq p_1$)

 $Dist(a) \leq R$

d-dimensional space

Faraway Points

 $Dist(b) \ge cR$

d-dimensional space

Consider all faraway Points

Exact t*n-NN Query in m-dim Space

if tn = 2, then one of the top-3 NNs in the projected space around $\pi(Q)$ is a c-ANN with constant probability

ProjDist(o₃) is the mininum among the 4 points

Inference

□ Problem 2:

Given that $z(\pi(P))$ is similar to $z((\pi(Q)))$, what can we infer about Dist(P)?

Measured by LLCP($z(\pi(P))$, $z((\pi(Q)))$)

□ LSB:

- □ If Dist(P) \leq (R) then Pr[LLCP(P, Q) \geq δ] \geq (p₁^m)
- If Dist(P) > (2R) then $Pr[LLCP(P, Q) \ge \delta] \le (p_2^m)$
- □ (some probability) at most $O(p_2^m n)$ points with ProjDist \leq R
- □ (constant probability) one of the $O(p_2^m n)$ points has Dist $\leq R$

z-order

$$z(\pi(o_1)) = 01 11 00$$

$$z(\pi(Q)) = 00 11 10$$

$$z(\pi(o_3)) = 00 11 00$$

$$LLCP(o_1, Q) = 1$$

 $LLCP(o_3, Q) = 4$

Inference

□ Problem 3:

Collision wrt w: if $|h_i(P) - h_i(Q)| \le w$

- □ Given that P's #collision $\ge \alpha m$, what can we infer about Dist(P)?
- C2LSH/QALSH:
 - If Dist(P) \leq R, then Pr[#collision $\geq \alpha$ m] $\geq \gamma_1$
 - If Dist(P) \rightarrow cR, then Pr[#collision $\geq \alpha$ m] $\leq \gamma_2$
 - □ (some probability) at most $O(\gamma_2^*n)$ points with #collision $\geq \alpha m$
 - □ (constant probability) one of the $O(\gamma_2^*n)$ points has #collision $\geq \alpha m$

Collision count

bucket width = 4

Collision count

bucket width = 3

Consider $h_1()$ axis

Collision count

bucket width = 3

Consider $h_1()$ axis

Consider $h_2()$ axis

#Collision(o₁) = 1 #Collision(o₂) = 1 #Collision(o₃) = 2 #Collision(o₄) = 0

Some Variants

- □ Looseness in C2LSH
 - γ_1 and γ_2 computed using tail bounds
 - Constant probability obtained using the union bound
 - □ Contrast between γ_1 and γ_2 is low by using $QZ(h_i(P)) = QZ(h_i(Q))$ as the collision
- QALSH
 - Use the right collision definition (virtual bucketing)
- PDA-LSH [YDSS20]
 - Computes γ_1 and γ_2 using Gaussian as an approximation
 - \blacksquare Approximately compute $Pr[E_1 \land E_2]$

Inference

□ Problem 4:

Collision wrt w: if $|h_i(P) - h_i(Q)| \le w$

□ Given that P's #collision $\geq \alpha$ m, what can we infer about \times

 \triangle Dist(P) ?

Requires assumption or tolerance of a prior

■ Bayesian LSH:

Posterior distribution

Then, one can calculate many things

$$Pr[x \ge R \mid E]$$

- MAP estimate $x^{\Lambda} = \operatorname{argmax}_{x} \Pr[x \mid E]$
- Bayesian Tail probabilities: $Pr[|x^*-x^{\wedge}|>\varepsilon | E]$

- □ Inference method → Access method
- □ SRS requires accessing projected points according to increasing ProjDist → R-tree (on disk) or Cover Tree (in memory)
 - m cannot be too large (e.g., m in [6, 8]) for R-tree

- □ Inference method → Access method
- □ Replace R-tree in SRS by a variant of the M-tree → PM-LSH
 - Allow m to be reasonably large (e.g., 15)
 - Uses distortion-based inference (partially)
- π (o₁) π (o₄) π (o₂)

- □ Inference method ← Access method
- □ Use a new definition of bucket and collision →
 R2LSH
 - Bucket in 2d subspace \triangleq Ball of radius w centered at $\pi_i(Q)$, i=1,...,m/2
 - Use the SRS-2 style stopping condition
 - Use a new index based on polar coordinates

- □ Inference method ← Access method
- □ C2LSH requires accessing each projection with a bucket width constraint → B-tree

bucket width = 3#Collision threshold = 2Only o_3 is a candidate

However, we do have partial information about o_1 and o_2

- □ Inference method ← Access method
- Make use of almost ALL accessed points in QALSH → VHP

		T	r (o ₁)			
						(
		π ((n)		\mathcal{H}	(o_4)	j
•	τ (ο						
		2)	π (0)3)			

Obje ct	#Collisi ons	Partial ProjDist	
01	1	3.2	
02	1	3.5	
<mark>0</mark> 3	2	1.3	

- □ Inference method ← Access method
- Make use of almost ALL accessed points in QALSH
 VHP

	Τ	r (o ₁)			
	T ((a)		π	(0_4)	
T (0	π (4)				
 t (o ₂	2)	π (c)2)			
		,,	13/			

Obje ct	#Collisi ons	Partial ProjDist	PPDist Threshold
01		3.2	<mark>3.4</mark>
02	1	3.5	3.4
03	2	1.3	1.9

Assuming the Partial ProjDist thresholds for different #Collisions, both o_1 and o_3 are candidates

Some Comparisons

Candidate Conditions

Method	Collision Count	(Observed) Distance	Max Candidates
SRS	= m	≤ r	Т
QALSH	≥ <i>α</i> m	n/a	$oldsymbol{eta}$ n
VHP	≥ i (i = 1, 2,, m)	$\leq l_i$	$oldsymbol{eta}$ n

• Candidate Regions

 $VHP = SRS \cap QALSH$

Stopping Condition

- Traditional LSH, C2LSH, SRS-1
 - \square Solve (c^k r, c)-NN queries, k = 0, 1, ...
 - limitations:
 - only c² approximate ratio
 - \blacksquare cannot support c = 1
 - Stopping on either condition:
 - \blacksquare a candidate has distance $\leq c^k R$
 - there are more than "enough" candidates found

Stopping Condition

- SRS-2 and R2LSH
 - Accessing objects by increasing order of their ProjDist
 - Keep the o_{min} which has the smallest Dist so far
 - Stop when $ProjDist \ge \lambda Dist(O_{min})$

$$\lambda = \frac{1}{c} \sqrt{\Psi_m^{-1} \left(p_\tau \right)}$$

Works even for c = 1!!

Assume Dist(o_3) = 1, then SRS-2 at most scans a hypersphere of radius λ

This hypersphere is monotonically shrinking (as we found better o_{min})

 π (o_2

Stopping Condition

⇒ Probabilistic Mapping

- Accessing objects by increasing order of their ProjDist
- Keep the o_{min} which has the smallest Dist so far
- Stop when ProjDist $\geq \lambda$ Dist(O_{min})

$$\lambda = \frac{1}{c} \sqrt{\Psi_m^{-1} (p_\tau)}$$

 π (o₁) π (o₄)

 π (0₃)

Works even for c = 1 !!

Assume Dist(o_3) = 1, then SRS-2 at most scans a hypersphere of radius λ

This hypersphere is monotonically shrinking (as we found better o_{min})

Stopping Condition

- □ I-LSH (upon QALSH)
 - Solve (r_k, c) -NN queries, where the r_k sequence is obtained according to the data near $\pi(Q)$
 - obtains c-ANN
 - Stopping on either condition:
 - Dist $(o_{min}) \le \lambda$ r, where 2r is the "current" virtual bucket width
 - there are more than "enough" candidates found

Comment

- Easy to relax the LSH method in practice at the cost of no worst-case guarantees
 - E2LSH: use fewer number of random projections
 - Multiprobe LSH (entropyLSH and other variants): spacetime tradeoff
 - LSH in practice: use empirically tuned parameters (k, l)
 - □ HD-index: space filling curves as pseudo-LSH functions
 - SK-LSH: Replace LSB-tree/forest by a dimension-wise linear mapping
 - □ ...

Data-sensitive Hashing

- LSH is data-insensitive
 - Indexing hyper-parameters determined by the shape of the data only
 - Indexing parameters are randomly generated
- □ Efforts to make data-sensitive, LSH-like methods
- ____ [AR15]
 - lacktriangle Aim: break the lower bounds of ho

c.f., [AIR18]

- DSH
 - OPFA / NeOPFA
- Learning-to-hash methods
 - NSH [PCM15]
 - \square [LYZX+18] and many in the ML/CV communities
 - 7

DSH [GJLO14]

 Learn a family of (hash) functions, H, that preserves kNN of queries

- 1. Training data: $\mathbf{W}_{ij} = \begin{cases} 1 & \text{, if } o_j \in kNN(q_i) \\ -1 & \text{, if } o_j \not\in kNN(q_i) \land o_j \text{ is sampled} \\ 0 & \text{otherwise.} \end{cases}$

 - their k-NN objects (+ve)
 - samples non-c*k-NN objects (-ve)
- 2. Function family:
 - lacksquare Thresholded linear functions $h(\mathbf{x}; \mathbf{a}) = \operatorname{sgn}(\mathbf{a}^{\top}\mathbf{x})$
- Learn one hash function

$$\arg\min_{h} \sum_{i} \sum_{j} \ell(q_i, o_j) \mathbf{W}_{ij} \quad \text{, where } \ell(q, o) = (h(q) - h(o))^2$$

DSH [GJLO14]

- Learn a family of (hash) functions, H, that preserves kNN of queries
 - Learn multiple hash functions
 - Multiplicative updates on W_{ii}
 - Increase W_{ii} if incorrectly classified
 - Decrease W_{ii} if correctly classified
 - (Under some assumptions) obtain H that satisifies the (k, ck, p_1 , p_2)-sensitive property for the training data

 - if $o \in NN(q, k)$, then collision probability from $H \ge p_1$ if $o \notin NN(q, ck)$, then collision probability from $H \le p_2$

Learned ANN Index [LZSW+20]

- Focus on external I/O
 - □ Use B-trees and maximize the use of sequential I/Os
- Scheme:
 - \blacksquare H: R^d \rightarrow R^M
 - Index each dimension of H(X) in a clustered B-tree
- Query processing
 - Collect candidates
 on each of the M
 projected
 dimensions
 - When T candidates are seen on all M lists, rerank them and return top-k

Function family

- Consider
 - linear functions
 - $\blacksquare H(x)[m] = w_m^T x$
 - non-linear functions

42

Consider the linear functions: $H(x)[m] = w_m^T x$

- □ Goal:
 - Encourage segment-order preserving mappings

Part of the Loss function

$$J^*(\mathbf{w}_m) = \sum_{i=1}^L \sum_{\tilde{x} \in l_i^o} \mathbf{1}_{r(\tilde{x})} \in [t \cdot (i-1), t \cdot i)$$

Continuous Relaxation

mapped x in the i-th segment

x in the i-th segment

Biology Inspired Hashing

FlyHash

 The fly olfactory circuit generates a lowoverlapping, sparse neuron activation pattern when an odor is presented

FlyHash

- Difference with LSH
 - W is a sparse binary random matrix
 - Dimensionality expansion !!
 - Sparsification
- L2 distance approximately preserved in expectation

Enable

[KH19]

- Unsupervised learning inspired by biological synaptic plasticity rules
- Overview
 - □ (Given W) Stabilizing the hidden competing neurons
 - Learning the projection matrix W

Learning h

Fixing the W, the dynamical equation will converge to a stable hidden vector h

Learning W

 Fixing the h, the dynamical equation will converge to a final weight matrix W

BioHash - Learning W

The rest is the same as FlyHash (i.e., WTA sparsification)