Approximate Query Processing
N

o Space Partitioning-based
o Tree
o Encoding
O Locality Sensitive Hashing

1 Graph-based Methods

Notes:
* Recent works mainly in the Database area

* Prefer ease of exposition over rigor

« Categorization is not fixed /unique



Locality Sensitive Hashing (LSH)
—m

1 From the persective of collision probability

= (Ordinary) hash function h: c.f., Cryptographic hash functions

u Pr[ h(x) = h(y) ] :@if x %y Pr[h(x) = h(y) ] = 2, if

< LSH Hamming(x, y) = 1

® Pr[ h(x) = h(y) ] increases with locality
® Randomness comes from r.v. .h_E@

(r1, ror P1, Po)-sensitive [IM98]

* Prlh(x) =h(y)]=p,,if dist(x, y) <,
* Prlh(x) =h(y)] < p,,if dist(x, y) =,

Pr[ h(x) = h(y) ] = sim(x, y) [CO2]
Can be generalized [SWQZ+14, ACPS18, CKPT19, ...]
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LSH is the best approach using sub-quadratic space

Locality Sensitive Hashing (LSH)

I
o Equality search

Index: store o into bucket'h(o) Pr[ h(q) = h(o)] = 1/B
Query:

= retrieve every o, in the bucket b(—q)_

O vfe_rﬁ_y if o, = q

sk
Vh € LSH-family, Pr{(Q(h(q)) = Q(h(o)) ] = f( Dist(q, o))
® Q( ): quantization (not essential)
m “Near-by” points have more chance of colliding with g than
“far-away” points
Similar index & query procedures, with a weak
probabilistic guarantee | => Repeat to boost the guarantee
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LSH Families

Many are known

L, (0 < p < 2): use p-stable distribution to generate the
projection vector

For L,, just use random Gaussian vector

Other families exists, e.g., sparse random projection
Angular distance (arccos): SimHash
Jaccard: minhash (based on random permutation)
Hamming:

random projection

covering LSH
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Comments

New queries can be reduced to known LSH cases
Maximum inner product search (MIPS)
Set containment
Group aggregated query

Related to various distortion-bounded embedding

Edit distance: CGK-embedding to Hamming with O(K)
distortion
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Probabilistic Mapping d>>m

—

d dims )

©
©  m0) =(h,(0), hy(0),
N M()) o

o Probabilistic, linear mapping from the original
space to the projected space
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Probabilistic Mapping

(Q)
oist®
7(0) = [h,(0), hy(0), | (*="_-®
..., h_(0)] >
> >

o Probabilistic, linear mapping from the original space to
the projected space

7 What about the distances (wrt Q or m(Q)) in these two
spaces?


Wei Wang

Wei Wang

Wei Wang


Probabilistic Distance Tracking

P ty of th '
__ Property of the Mapping

m(O) = [h,(0), hy(O),
.r h,(O)] o<~

- ProjDist(P)# ~(Dist(P)2* x*,, | [SWQZ+14]

ProjDist(P)? can be computed (incrementally) from h,(P)
and h,(Q) due to the linearity of the hash function

Can be generalized to other p-stable LSH functions
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Probabilistic Distance Tracking

Proier’ri of the Mo: :in:
s d dims m dims

P oi® e
pist(P) m(0) = [h,(0), hy(0), | ¥ __--®
veer h_(0)] e

/ p > T —

LSH provides a probabilistic distance-preserving mapping
between the two spaces

Johnson & Lindenstrauss Lemma [JL84] only works for L2 and induces a
method that requires more space than LSH [AIR1 8]
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Roadmap

o4
0 Roadmap o(,\“n
o Practical LSH methods (i.e., linear index complexity)

o Data-dependent LSH methods

e ——
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New Perspectives
B

-1 Inference Method

1 Access method

o Stopping condition



Inference

-1 Problem 1: -el ProjDist(P)? ~ Dist(P)?* x°, |
o Given that(ProjDist(P) < r, what can we infer about

Dist(P)?
1 SRS: Similar to the usual (r,, ry, p;, pP,) definition of LSH

5| o1f Dist(P) < R, then Pr{ ProjDist(P) < r 1 = (W,( (r/R)’

E, o1 If Dist(P) > cR, then Pr[ ProjDist(P)/< r\] < W_( (r/cR)?
> (some probability) at most O(tn) points with ProjDist < R

.21 (constant probability) one of ’rhe@_p_cits has Dist < R

* This solves the so-called (R, c)-NN queries = returns a ¢2 ANN
* Using another algorithm & proof =2 returns a c-ANN

Inference requires precise & complete information of the projections
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ear/Points

‘ Likely (= p,) \ Dist(a) < R

d-dimensional space

~
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Faraway Points
—

S@ﬂ Dist(b) > cR

AN
\
ce/

) d-dimensional space

e
/
/ﬁ

~—
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Consider all faraway Points

Expected to se of them

T

d-dimensional space
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Exact +*n-NN Query in m-dim Space

h(0;)
1 (04)
m (q)
P 7 (0y) e/.

if th = 2, then one of
the top-3 NN in the
projected space
around 1(Q) is a c-
ANN with constant
probability

ProjDist(o5) is the
mininum among the 4
points




Inference

1 Problem 2:

o Given ’rhq’r(@ﬂé P)))is similar ’ro what can we infer

about Dist(P)2 Measured by LLCP( z(n(P)) , z((=(Q)) )
- LSB:

E o If Dist(P) <(R) then Pr[ LLCP(P, Q) = 6] > @
o If Dist(P) >(2R) then Pr[LLCP(P, Q) > § ] S@

o1 (some probability) at most O(p,™ n) points with ProjDist <
R

o (constant probability) one of the O(p,™n) points has Dist
<R

Inference requires precise & complete information of about z() values
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z-order

z(nfoy)) = Ofl 11 08|

1T (04)

z(m(Q)) = 00 11 10

z(m(o5)) = 00 1fi] 08

000 001010011100 101110111

LLCP( O—_]

LLCP( o5, Q) = 4
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Inference

19
1 Problem 3: Collision wrt w: if |ﬁ(Pﬂ—(ﬁ,(QD < VQ
—_— =LA
o Given that P’s #collision =(am,what can we infer about
Dist(P)? — -

O C;QLSH/QALSH:
o If Dist(P) @’rhen Pr[ #'collision >am] = vy,

—

o If Dist(P) >@’rhen Pr[ #collision > am ] < y,

0 (some probability) at most O(y,™n) points with #collision
= am

1 (constant probability) one of the O(y,*n) points has
Hcollision = am

Inference requires rough & incomplete information of the projections



Wei Wang

Wei Wang

Wei Wang

Wei Wang

Wei Wang

Wei Wang


Collision count

h,(o,)
bucket width = 4
hy(0y) e @ (o)
1
‘ T L~ N\
(O4)
m(q)
) o
{0,
T (03)




Collision count
T

bucket width ﬂ

Consider h,() axis
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Collision count

bucket width = 3

Consider h,() axis

Consider h,() axis

#Collision(o;) = 1
#Collision(o,) = 1
#Collision(o;) = 2
#Collision(a) =0
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Some Variants

Looseness in

Y, and Y, computed using tail bounds

Constant probability obtained using the union bound

Contrast between Y, and Y, is low by using QZ(h,(P)) =
QZ(h,(Q)) as the collision

QALSH
Use the right collision definition (virtual bucketing)
PDA-LSH [YDSS20]

Computes ¥, and ¥, using Gaussian as an
approximation

Approximately compute Pr[E; A E;]
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Inference
2

1 Problem 4:
H 1 Given that P’

2 Dist(P) 2
A a0

Collision wrt w: if |h(P)—h(Q)| <w

Hcollision = am; what can we infer qbou’r@

Requires assumption or tolerance of a prior

Posterior distribution

o1 Then, one can calculate many things

mPr[ x =R | E]

= MAP estimate x" = argmax, Pr[ x | E]

= Bayesian Tail probabilities: Pr[ - xM>e | E]
- =

Inference requires rough & incomplete information of the projections
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Access Method

Inference method = Access method
SRS requires accessing projected points according
to increasing ProjDist = R-tree (on disk) or Cover
Tree (in memory)

m cannot be too large (e.g., m in [6, 8]) for R-tree

o
1 (0,)

T (04)
m(q)
O

1 (05)
1T (053)
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Access Method

Inference method = Access method

Replace R-tree in SRS by a variant of the M-tree =
PM-LSH
Allow m to be reasonably large (e.g., 15)

Uses distortion-based inference (partially)

o
1 (0)

1T (04)
m(q)
O

1T (0y)
1T (03)
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Access Method

Inference method € Access method

Use a new definition of bucket and collision =»
R2LSH

Bucket in 2d subspace = Ball of radius w centered at
m(Q),i=1,...,m/2
Use the SRS-2 style stopping condition

Use a new index based on polar coordinates
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Access Method
T

7 Inference method € Access method

1 C2LSH requires accessing each projection with a
bucket width constraint = B-tree

bucket width = 3
#Collision threshold = 2

Only o5 is a candidate

However, we do have partial
information about o, and o,




Access Method

Inference method € Access method

Make use of almost ALL accessed points in QALSH

> VHP
#Collisi | Partial
ons ProjDist
® ] 3.2
1 (01) =
0, 1 3.5
_ 05 2 1.3

L

[ ol
N

@
A
N’
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Access Method

Inference method € Access method

Make use of almost ALL accessed points in QALSH

- VHP
#Collisi | Partial PPDist
ons ProjDist Threshold
® o ] 3.2 3.4
1 (01) |
0, 1 3.5 3.4
05 2 1.3 1.9

L

[ ol
N

@
A
N’

Assuming the Partial ProjDist
thresholds for different #Collisions,
both o, and o; are candidates
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Some Comparisons

* Candidate Conditions
Method | Collision Count | (Observed) Distance Max Candidates

SRS =m <r T

QALSH > am n/a fn

VHP >i(i=1,2.. <I Bn
m)

* Candidate Regions

VHP = SRS N QALSH




Stopping Condition

Traditional LSH, C2LSH, SRS-1
Solve (c*r, ¢)-NN queries, k =0, 1, ...
limitations:
only c? approximate ratio
cannot support ¢ = 1
Stopping on either condition:

a candidate has distance < ck R

there are more than “enough” candidates found



Stopping Condition

N
1 SRS-2 and R2LSH

0 Accessing objects by increasing order of their ProjDist

o1 Keep the o, which has the smallest Dist so far

1 Stop when ProjDist >(A Dist(O,,;, _ L
p rojDis (Opin) A c\/xpm (p-)

_—

Works even forc =1 Il

Assume Dist(o;) = 1, then SRS-2 at
most scans a hypersphere of radius A

This hypersphere is monotonically
shrinking (as we found better o

min)
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Dls’rqnce Dls’ror’rlon - LSH

Stopping Condition

71 SRS-2 and R2LSH =] Probabilistic Mapping

0 Accessing objects by increasing order of their ProjDist

o1 Keep the o, which has the smallest Dist so far
o Stop when ProjDist > A Dist(O,,;, _ L fga
p i (Onin) Q)= y/wa )

=4

‘ Works even forc =1 I\

Assume Dist(o;) = 1, then SRS-2 at
most scans a hypersphere of radius A

This hypersphere is monotonically
shrinking (as we found better o

min)
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Stopping Condition

|-LSH (upon QALSH)

Solve (r,, c)-NN queries, where the r, sequence is
obtained according to the data near (Q)

obtains c-ANN
Stopping on either condition:
Dist(o

there are more than “enough” candidates found

) < Ar, where 2r is the "current” virtual bucket width

min



Comment

Easy to relax the LSH method in practice at the cost
of no worst-case guarantees
E2LSH: use fewer number of random projections

Multiprobe LSH (entropyLSH and other variants): space-
time tradeoff

LSH in practice: use empirically tuned parameters (k, )
HD-index: space filling curves as pseudo-LSH functions

SK-LSH: Replace LSB-tree /forest by a dimension-wise
linear mapping



Data-sensitive Hashing
N

1 LSH is data-insensitive

o Indexing hyper-parameters determined by the shape of the
data only

o Indexing parameters are randomly generated
o1 Efforts to make data-sensitive, LSH-like methods

17 [AR15]
® Aim: break the lower bounds of p
= DSH

1 OPFA / NeOPFA

71 Learning-to-hash methods
= NSH [PCM1 5]
0 [LYZX+18] and many in the ML/CV communities

2] c.f., https:/ /learning2hash.github.io and https:
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DSH [GJLO14]

Learn a family of (hash) functions, H, that preserves

kNN of queries
Training data: W, = 4

sampled queries
their k-NN objects (+ve)

(1 ,ifo; € kNN(g)
—1 ,ifo; € kNN (q;) N o; is sampled

0 otherwise.

\

samples non-c*k-NN objects|(-ve)

Function family:

Thresholded linear functions h(x;a) = Sgn(aTX)

Learn one hash function

arg m}znZZE(qi, 0;) W;; , where {(q,0) = (h(q) — h(0))?
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DSH [GJLO14]

Learn a family of (hash) functions, H, that preserves
kNN of queries

Learn multiple hash functions
Multiplicative updates on W,
Increase W; if incorrectly classified
Decrease W if correctly classified

(Under some assumptions) obtain H that satisifies the (k, ck,
P1, Po)-sensitive property for the training data

if o € NN(q, k), then collision probability from H > p,
if o € NN(q, ck), then collision probability from H < p,

Key difference with'AdaBoost: High recall and low precision
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Learned ANN Index [LZSW+20]

o Focus on external |/O
Use B-trees and maximize the use of sequential |/Os
L / ~ MedRank

1 Scheme:
H: RY > RM

Index each dimension of H(X) in a clustered B-tree

(minfreq = 1)
[FKSO3]

7 Query processing must c.f., [AFKPSO08]

Collect candidates
on each of the M

x=[x, X0, ..., Xa1] € R?

projected iR

. . @ 0711 )
dimensions L O'_C; 00 000000 000
When T candidates Pl (= g*[2) =)

are seen on all M L O_d

lists, rerank them

and return top-k l i (Emm V] mm)
M—O—(>—£)—()—()_()_()_()() OO O O



Function family

1 Consider

linear functions

® H(x)[m] = w,_ x

non-linear functions

X2

XN

((—

0O

J ()

Input layer hidden layers output layer

Inputs

Outputs
Neural Network

W

Weighted order
preserving loss

>

Order list



How to learn the parameters?

42| — Consider the linear functions:
H(x)[m] = w.T x
1 Goal: ()im] = wi,

o1 Encourage segment-order preserving mappings

Continuous

Part of Relaxation

the Loss

function

mapped x in the i-th segment x in the i-th segment




Biology Inspired Hashing
o

Machine Learning

o Flyhash [DSN17]

1 Biohash

Neural

networks Deep

Meta

Learning
Learning

Biological Optimization

findings Genetic

algorithm SR PIES

Systems




FlyHash
n

o1 The fly olfactory circuit generates a low-
overlapping, sparse neuron activation pattern when
an odor is presented

Step 1 Step 2 Step 3
Center the mean Random projection Winner-take-all

o = 5 - C
% > \_/

(ONO)

©) >
OOOO

©) >

o°o°

@)
OOOO

~50 odorant receptor ~50 projection ~2000 Kenyon cells
neuron (ORN) types neurons (PNs) ()
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FlyHash

45|
-1 Difference with LSH

W is a sparse binary random matrix -—

Dimensionality expansion !

Sparsification

11 L2 distance
approximately
preserved in

Odor = OOOO

expectation

Step 1

Enable
"

Step 2

Center the mean Random projection

»
>
»
>

»

»
>

»
>

(ONO)
©)

»
o

o°o°

»
>

@)
OOOO

-1 LU

Keep top-k
activations

~50 odorant receptor
neuron (ORN) types

~50 projection ~2000 Kenyo
neurons (PNs) (KCs)
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[KH19]

Unsupervised learning inspired by biological
synaptic plasticity rules
Overview

(Given W) Stabilizing the hidden competing neurons

Learning the projection matrix W



Learning h

input v; 14 iy hs

.P% P

T— (hy) =1,|—7 Z RELU (hy)|— hy, where I, =(W,,Vv)
VFE

Competing for activation

Fixing the W, the dynamical equation will converge
to a stable hidden vector h



Learning W

h- is the activation threshold
_ \%Y%
input v; h g(h)y
s L
hs
hs hs
hy : A -
_A K : * h
hs
d (W, V)
L— (W;) =9(Q) (vi — (W, v)W;), where Q = -
dt (W, W)2
p = 2, for any one hidden neuron
\éVzls ]l'rs corresponding weight vector Force |W |, to converge fo RP

Fixing the h, the dynamical equation will converge
to a final weight matrix W



BioHash — Learning W

sort the projections and rank them

input v; hy
. 1, rank(z)=1
; glzl =< —A, rank(z)=r
3 0, otherwise
hy
hs

d <W A%
7,— (W;) = Vi — W,V W; ) where — 7 L
L5 (W =g([ @) (v — (W) W) Q=

sorting among different
normalized inner products (each
produced by a different W,)

The rest is the same as FlyHash (i.e., WTA
sparsification)



